
Jeffrey S Mogil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7831707/publications.pdf Version: 2024-02-01

IFFEDEV S MOCIL

#	Article	IF	CITATIONS
1	Genome-wide analysis identifies impaired axonogenesis in chronic overlapping pain conditions. Brain, 2022, 145, 1111-1123.	3.7	24
2	Innovations and advances in modelling and measuring pain in animals. Nature Reviews Neuroscience, 2022, 23, 70-85.	4.9	72
3	Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nature Communications, 2022, 13, 843.	5.8	62
4	Contextual control of conditioned pain tolerance and endogenous analgesic systems. ELife, 2022, 11, .	2.8	4
5	Long-term male-specific chronic pain via telomere- and p53‑mediated spinal cord cellular senescence. Journal of Clinical Investigation, 2022, 132, .	3.9	25
6	Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Science Translational Medicine, 2022, 14, eabj9954.	5.8	115
7	mTORC2 mediates structural plasticity in distal nociceptive endings that contributes to pain hypersensitivity following inflammation. Journal of Clinical Investigation, 2022, 132, .	3.9	6
8	Microglia-mediated degradation of perineuronal nets promotes pain. Science, 2022, 377, 80-86.	6.0	52
9	Olfactory exposure to late-pregnant and lactating mice causes stress-induced analgesia in male mice. Science Advances, 2022, 8, .	4.7	1
10	Efficacy of ketamine in relieving neuropathic pain: a systematic review and meta-analysis of animal studies. Pain, 2021, 162, 2320-2330.	2.0	15
11	Identification and characterization of novel candidate compounds targeting 6―and 7â€transmembrane μâ€opioid receptor isoforms. British Journal of Pharmacology, 2021, 178, 2709-2726.	2.7	4
12	Mast cell stabilizer ketotifen fumarate reverses inflammatory but not neuropathic-induced mechanical pain in mice. Pain Reports, 2021, 6, e902.	1.4	7
13	Sources of Individual Differences in Pain. Annual Review of Neuroscience, 2021, 44, 1-25.	5.0	23
14	Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain, 2021, 162, 1416-1425.	2.0	35
15	MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. Pain, 2020, 161, 47-60.	2.0	23
16	Response to Moisset et al Pain, 2020, 161, 2427-2428.	2.0	0
17	The development and use of facial grimace scales for pain measurement in animals. Neuroscience and Biobehavioral Reviews, 2020, 116, 480-493.	2.9	81
18	The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 2020, 161, 1976-1982.	2.0	1,880

#	Article	IF	CITATIONS
19	Chronic pain produces hypervigilance to predator odor in mice. Current Biology, 2020, 30, R866-R867.	1.8	24
20	Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nature Reviews Neuroscience, 2020, 21, 353-365.	4.9	367
21	A systematic review and meta-analysis of pregabalin preclinical studies. Pain, 2020, 161, 684-693.	2.0	18
22	The influence of aging and duration of nerve injury on the antiallodynic efficacy of analgesics in laboratory mice. Pain Reports, 2020, 5, e824.	1.4	17
23	Modulation of social behavior and dominance status by chronic pain in mice. Genes, Brain and Behavior, 2019, 18, e12514.	1.1	20
24	Recruitment of Spinoparabrachial Neurons by Dorsal Horn Calretinin Neurons. Cell Reports, 2019, 28, 1429-1438.e4.	2.9	40
25	Stats: multiple experiments test biomedical conclusions. Nature, 2019, 569, 192-192.	13.7	3
26	The translatability of pain across species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190286.	1.8	45
27	Comprehensive analysis of long noncoding RNA expression in dorsal root ganglion reveals cell-type specificity and dysregulation after nerve injury. Pain, 2019, 160, 463-485.	2.0	45
28	Conditioned pain modulation in rodents can feature hyperalgesia or hypoalgesia depending on test stimulus intensity. Pain, 2019, 160, 784-792.	2.0	10
29	Increased pain sensitivity and decreased opioid analgesia in T-cell-deficient mice and implications for sex differences. Pain, 2019, 160, 358-366.	2.0	65
30	Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males. Pain, 2019, 160, 579-591.	2.0	37
31	Genetic pathway analysis reveals a major role for extracellular matrix organization in inflammatory and neuropathic pain. Pain, 2019, 160, 932-944.	2.0	53
32	Assessment of Pregabalin Postapproval Trials and the Suggestion of Efficacy for New Indications. JAMA Internal Medicine, 2019, 179, 90.	2.6	24
33	Male-Specific Conditioned Pain Hypersensitivity in Mice and Humans. Current Biology, 2019, 29, 192-201.e4.	1.8	53
34	Mice are people too: Increasing evidence for cognitive, emotional and social capabilities in laboratory rodents Canadian Psychology, 2019, 60, 14-20.	1.4	17
35	Translation regulation in the spinal dorsal horn – A key mechanism for development of chronic pain. Neurobiology of Pain (Cambridge, Mass), 2018, 4, 20-26.	1.0	5
36	Spontaneous painful disease in companion animals can facilitate the development of chronic pain therapies for humans. Osteoarthritis and Cartilage, 2018, 26, 175-183.	0.6	41

#	Article	IF	CITATIONS
37	A deep neural network to assess spontaneous pain from mouse facial expressions. Molecular Pain, 2018, 14, 174480691876365.	1.0	102
38	Comparing phenotypic variation between inbred and outbred mice. Nature Methods, 2018, 15, 994-996.	9.0	192
39	Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats. Pain, 2018, 159, 1752-1763.	2.0	165
40	Conceptual complexity of gender and its relevance to pain. Pain, 2018, 159, 2137-2141.	2.0	75
41	Translational profiling of dorsal root ganglia and spinal cord in a mouse model of neuropathic pain. Neurobiology of Pain (Cambridge, Mass), 2018, 4, 35-44.	1.0	45
42	Friends in pain: pain tolerance in a social network. Scandinavian Journal of Pain, 2018, 18, 343-344.	0.5	0
43	Sex-based divergence of mechanisms underlying pain and pain inhibition. Current Opinion in Behavioral Sciences, 2018, 23, 113-117.	2.0	14
44	Laboratory environmental factors and pain behavior: the relevance of unknown unknowns to reproducibility and translation. Lab Animal, 2017, 46, 136-141.	0.2	56
45	John K. Belknap (1943–2017). Genes, Brain and Behavior, 2017, 16, 489-489.	1.1	0
46	Social propinquity in rodents as measured by tube cooccupancy differs between inbred and outbred genotypes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5515-5520.	3.3	15
47	Translational pain assessment: could natural animal models be the missing link?. Pain, 2017, 158, 1633-1646.	2.0	88
48	T-Cell Mediation of Pregnancy Analgesia Affecting Chronic Pain in Mice. Journal of Neuroscience, 2017, 37, 9819-9827.	1.7	46
49	The MNK–elF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. Journal of Neuroscience, 2017, 37, 7481-7499.	1.7	106
50	Sex differences in neuroimmunity and pain. Journal of Neuroscience Research, 2017, 95, 500-508.	1.3	242
51	No publication without confirmation. Nature, 2017, 542, 409-411.	13.7	62
52	Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes. Cell Reports, 2017, 19, 1940-1952.	2.9	83
53	Epiregulin and EGFR interactions are involved in pain processing. Journal of Clinical Investigation, 2017, 127, 3353-3366.	3.9	85
54	Ensuring transparency and minimization of methodologic bias in preclinical pain research. Pain, 2016, 157, 901-909.	2.0	70

#	Article	IF	CITATIONS
55	Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test. Genes, Brain and Behavior, 2016, 15, 604-615.	1.1	9
56	Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling. Scientific Reports, 2016, 5, 18198.	1.6	34
57	Perspective: Equality need not be painful. Nature, 2016, 535, S7-S7.	13.7	51
58	elF2α phosphorylation controls thermal nociception. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11949-11954.	3.3	37
59	Early weaning impairs a social contagion of painâ€related stretching behavior in mice. Developmental Psychobiology, 2016, 58, 1101-1107.	0.9	9
60	Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition. Science Signaling, 2016, 9, ra32.	1.6	43
61	A data science approach to candidate gene selection of pain regarded as a process of learning and neural plasticity. Pain, 2016, 157, 2747-2757.	2.0	35
62	Optogenetic Silencing of Na _v 1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain. ENeuro, 2016, 3, ENEURO.0140-15.2016.	0.9	107
63	ISDN2014_0393: A role for the transcription factor lmx1b in pain modality discrimination. International Journal of Developmental Neuroscience, 2015, 47, 115-116.	0.7	0
64	Reply. Pain, 2015, 156, 1828-1829.	2.0	1
65	Molecular genetic mechanisms of allelic specific regulation of murine Comt expression. Pain, 2015, 156, 1965-1977.	2.0	8
66	Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain, 2015, 156, 2616-2626.	2.0	188
67	Differences in the Antinociceptive Effects and Binding Properties of Propranolol and Bupranolol Enantiomers. Journal of Pain, 2015, 16, 1321-1333.	0.7	27
68	Reducing Social Stress Elicits Emotional Contagion of Pain in Mouse and Human Strangers. Current Biology, 2015, 25, 326-332.	1.8	189
69	Ontogeny and phylogeny of facial expression of pain. Pain, 2015, 156, 798-799.	2.0	39
70	Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, 18, 1081-1083.	7.1	1,041
71	The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Science Translational Medicine, 2015, 7, 287ra72.	5.8	59
72	Sex inclusion in basic research drives discovery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5257-5258.	3.3	187

#	Article	IF	CITATIONS
73	Social modulation of and by pain in humans and rodents. Pain, 2015, 156, S35-S41.	2.0	107
74	Hoxb8 Intersection Defines a Role for <i>Lmx1b</i> in Excitatory Dorsal Horn Neuron Development, Spinofugal Connectivity, and Nociception. Journal of Neuroscience, 2015, 35, 5233-5246.	1.7	31
75	Translational control of nociception via 4E-binding protein 1. ELife, 2015, 4, .	2.8	34
76	Distinguishing between Exploratory and Confirmatory Preclinical Research Will Improve Translation. PLoS Biology, 2014, 12, e1001863.	2.6	185
77	Quantifying Blood-Spinal Cord Barrier Permeability after Peripheral Nerve Injury in the Living Mouse. Molecular Pain, 2014, 10, 1744-8069-10-60.	1.0	19
78	Pain Reduces Sexual Motivation in Female But Not Male Mice. Journal of Neuroscience, 2014, 34, 5747-5753.	1.7	26
79	Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods, 2014, 11, 629-632.	9.0	699
80	The Role of Pain Catastrophizing in Experimental Pain Perception. Pain Practice, 2014, 14, E136-45.	0.9	31
81	Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain, 2014, 155, 2063-2070.	2.0	40
82	Introducing Pain Classics : A special review series for PAIN®. Pain, 2014, 155, 207.	2.0	1
83	The Interaction Between Pain and Social Behavior in Humans and Rodents. Current Topics in Behavioral Neurosciences, 2014, 20, 233-250.	0.8	52
84	Imputation of truncated p-values for meta-analysis methods and its genomic application. Annals of Applied Statistics, 2014, 8, 2150-2174.	0.5	8
85	Pain modality- and sex-specific effects of COMT genetic functional variants. Pain, 2013, 154, 1368-1376.	2.0	81
86	Remote Optogenetic Activation and Sensitization of Pain Pathways in Freely Moving Mice. Journal of Neuroscience, 2013, 33, 18631-18640.	1.7	155
87	Functional genomics of pain in analgesic drug development and therapy. , 2013, 139, 60-70.		61
88	Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain, 2013, 154, 1254-1262.	2.0	76
89	mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain, 2013, 154, 1080-1091.	2.0	79
90	Control of Synaptic Plasticity and Memory via Suppression of Poly(A)-Binding Protein. Neuron, 2013, 78, 298-311.	3.8	65

#	Article	IF	CITATIONS
91	Constitutive μ-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence. Science, 2013, 341, 1394-1399.	6.0	191
92	The Yin and Yang of pain: variability in formalin test nociception and morphine analgesia produced by the Yin Yang 1 transcription factor gene. Genes, Brain and Behavior, 2013, 12, 405-413.	1.1	9
93	Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nature Reviews Neuroscience, 2012, 13, 859-866.	4.9	750
94	A role for PACE4 in osteoarthritis pain: evidence from human genetic association and null mutant phenotype. Annals of the Rheumatic Diseases, 2012, 71, 1042-1048.	0.5	49
95	Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nature Medicine, 2012, 18, 595-599.	15.2	335
96	Loss of Neuronal Potassium/Chloride Cotransporter 3 (KCC3) Is Responsible for the Degenerative Phenotype in a Conditional Mouse Model of Hereditary Motor and Sensory Neuropathy Associated with Agenesis of the Corpus Callosum. Journal of Neuroscience, 2012, 32, 3865-3876.	1.7	32
97	The Etiology and Symptomatology of Spontaneous Pain. Journal of Pain, 2012, 13, 932-933.	0.7	20
98	Ethnicity interacts with the OPRM1 gene in experimental pain sensitivity. Pain, 2012, 153, 1610-1619.	2.0	71
99	The surprising empathic abilities of rodents. Trends in Cognitive Sciences, 2012, 16, 143-144.	4.0	49
100	Serotonin-Induced Hypersensitivity via Inhibition of Catechol O-Methyltransferase Activity. Molecular Pain, 2012, 8, 1744-8069-8-25.	1.0	16
101	Pain genetics: past, present and future. Trends in Genetics, 2012, 28, 258-266.	2.9	308
102	Using the Mouse Grimace Scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. Journal of the American Association for Laboratory Animal Science, 2012, 51, 42-9.	0.6	150
103	Varying Perceived Social Threat Modulates Pain Behavior in Male Mice. Journal of Pain, 2011, 12, 125-132.	0.7	64
104	Introducing the Biennial Review of Pain. Pain, 2011, 152, S1.	2.0	2
105	Patterns of pain: Meta-analysis of microarray studies of pain. Pain, 2011, 152, 1888-1898.	2.0	176
106	The Rat Grimace Scale: A Partially Automated Method for Quantifying Pain in the Laboratory Rat via Facial Expressions. Molecular Pain, 2011, 7, 1744-8069-7-55.	1.0	521
107	Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction. Nature Neuroscience, 2011, 14, 1569-1573.	7.1	110
108	A biopsychosocial formulation of pain communication Psychological Bulletin, 2011, 137, 910-939.	5.5	364

#	Article	IF	CITATIONS
109	Repeated Vulvovaginal Fungal Infections Cause Persistent Pain in a Mouse Model of Vulvodynia. Science Translational Medicine, 2011, 3, 101ra91.	5.8	111
110	Spinal Cord Toll-Like Receptor 4 Mediates Inflammatory and Neuropathic Hypersensitivity in Male But Not Female Mice. Journal of Neuroscience, 2011, 31, 15450-15454.	1.7	394
111	Genetics of Opioid Actions. , 2011, , 457-497.		1
112	ADAMTS-5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization. Osteoarthritis and Cartilage, 2010, 18, 572-580.	0.6	114
113	The necessity of animal models in pain research. Pain, 2010, 151, 12-17.	2.0	218
114	Expression Genetics Identifies Spinal Mechanisms Supporting Formalin Late Phase Behaviors. Molecular Pain, 2010, 6, 1744-8069-6-11.	1.0	19
115	Positional cloning of a quantitative trait locus contributing to pain sensitivity: possible mediation by <i>Tyrp1</i> . Genes, Brain and Behavior, 2010, 9, 856-867.	1.1	5
116	Coding of facial expressions of pain in the laboratory mouse. Nature Methods, 2010, 7, 447-449.	9.0	1,024
117	Sex and gender differences in pain and analgesia. Progress in Brain Research, 2010, 186, 140-157.	0.9	183
118	Oxytocin-Induced Analgesia and Scratching Are Mediated by the Vasopressin-1A Receptor in the Mouse. Journal of Neuroscience, 2010, 30, 8274-8284.	1.7	175
119	Social approach to pain in laboratory mice. Social Neuroscience, 2010, 5, 163-170.	0.7	113
120	Hypolocomotion, Asymmetrically Directed Behaviors (Licking, Lifting, Flinching, and Shaking) and Dynamic Weight Bearing (Gait) Changes are Not Measures of Neuropathic Pain in Mice. Molecular Pain, 2010, 6, 1744-8069-6-34.	1.0	101
121	The Genetics of Pain and Analgesia in Laboratory Animals. Methods in Molecular Biology, 2010, 617, 261-278.	0.4	31
122	Sex-specific Mediation of Opioid-induced Hyperalgesia by the Melanocortin-1 Receptor. Anesthesiology, 2010, 112, 181-188.	1.3	57
123	Carriers of Recessive <i>WNK1</i> / <i>HSN2</i> Mutations for Hereditary Sensory and Autonomic Neuropathy Type 2 (HSAN2) Are More Sensitive to Thermal Stimuli. Journal of Neuroscience, 2009, 29, 2162-2166.	1.7	18
124	Are we getting anywhere in human pain genetics?. Pain, 2009, 146, 231-232.	2.0	52
125	Role of Central Calcitonin Gene-Related Peptide (CGRP) in Locomotor and Anxiety- and Depression-Like Behaviors in Two Mouse Strains Exhibiting a CGRP-Dependent Difference in Thermal Pain Sensitivity. Journal of Molecular Neuroscience, 2009, 39, 125-136.	1.1	28
126	Animal models of pain: progress and challenges. Nature Reviews Neuroscience, 2009, 10, 283-294.	4.9	912

#	Article	IF	CITATIONS
127	Gnao1 (GαO protein) is a likely genetic contributor to variation in physical dependence on opioids in mice. Neuroscience, 2009, 162, 1255-1264.	1.1	21
128	Pain research from 1975 to 2007: A categorical and bibliometric meta-trend analysis of every Research Paper published in the journal, Pain. Pain, 2009, 142, 48-58.	2.0	46
129	The β3 subunit of the Na+,K+-ATPase mediates variable nociceptive sensitivity in the formalin test. Pain, 2009, 144, 294-302.	2.0	43
130	Progress in Genetic Studies of Pain and Analgesia. Annual Review of Pharmacology and Toxicology, 2009, 49, 97-121.	4.2	155
131	Animal models and the prediction of efficacy in clinical trials of analgesic drugs: A critical appraisal and call for uniform reporting standards. Pain, 2008, 139, 243-247.	2.0	251
132	Modulation of Mechanical and Thermal Nociceptive Sensitivity in the Laboratory Mouse by Behavioral State. Journal of Pain, 2008, 9, 174-184.	0.7	75
133	Empathy hurts: Compassion for another increases both sensory and affective components of pain perception. Pain, 2008, 136, 168-176.	2.0	150
134	Experimentally Induced Mood Changes Preferentially Affect Pain Unpleasantness. Journal of Pain, 2008, 9, 784-791.	0.7	82
135	Pain Testing in the Laboratory Mouse. , 2008, , 549-560.		6
136	Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes. Pharmacogenetics and Genomics, 2008, 18, 231-241.	0.7	51
137	The AcB/BcA Recombinant Congenic Strains of Mice: Strategies for Phenotype Dissection, Mapping and Cloning of Quantitative Trait Genes. Novartis Foundation Symposium, 2007, 281, 141-155.	1.2	8
138	Expression of CCR2 in Both Resident and Bone Marrow-Derived Microglia Plays a Critical Role in Neuropathic Pain. Journal of Neuroscience, 2007, 27, 12396-12406.	1.7	381
139	Studying sex and gender differences in pain and analgesia: A consensus report. Pain, 2007, 132, S26-S45.	2.0	797
140	The Pain Genes Database : An interactive web browser of pain-related transgenic knockout studies. Pain, 2007, 131, 3e1-3e4.	2.0	186
141	Genética del dolor. , 2007, , 161-176.		Ο
142	Social Modulation of Pain as Evidence for Empathy in Mice. Science, 2006, 312, 1967-1970.	6.0	710
143	Influence of genotype, dose and sex on pruritogen-induced scratching behavior in the mouse. Pain, 2006, 124, 50-58.	2.0	96
144	Screening for pain phenotypes: Analysis of three congenic mouse strains on a battery of nine nociceptive assays. Pain, 2006, 126, 24-34.	2.0	70

#	Article	IF	CITATIONS
145	Sex differences in the effects of amiloride on formalin test nociception in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R335-R342.	0.9	27
146	Mice, Pain, and Empathy. Science, 2006, 314, 253-253.	6.0	7
147	Chapter 23 Sex, gender and pain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2006, 81, 325-341.	1.0	7
148	The genetics of pain. , 2006, , 159-174.		6
149	Region-specific changes of calcium/calmodulin-dependent protein kinase IV in the mouse brain following chronic morphine treatment. NeuroReport, 2005, 16, 879-882.	0.6	8
150	The Magnitude of Mechanical Allodynia in a Rodent Model of Lumbar Radiculopathy is Dependent on Strain and Sex. Spine, 2005, 30, 1821-1827.	1.0	65
151	Influence of Nociception and Stress-induced Antinociception on Genetic Variation in Isoflurane Anesthetic Potency among Mouse Strains. Anesthesiology, 2005, 103, 751-758.	1.3	40
152	Transgenic Expression of a Dominant-Negative ASIC3 Subunit Leads to Increased Sensitivity to Mechanical and Inflammatory Stimuli. Journal of Neuroscience, 2005, 25, 9893-9901.	1.7	115
153	Melanocortin-1 receptor gene variants affect pain and Â-opioid analgesia in mice and humans. Journal of Medical Genetics, 2005, 42, 583-587.	1.5	215
154	Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12938-12943.	3.3	151
155	Reply to Vierck et al. comment on Mogil and Crager (2004). Pain, 2005, 114, 523-524.	2.0	0
156	The case for the inclusion of female subjects in basic science studies of pain. Pain, 2005, 117, 1-5.	2.0	300
157	Individual responder analyses for pain: does one pain scale fit all?. Trends in Pharmacological Sciences, 2005, 26, 125-130.	4.0	102
158	The A118G single nucleotide polymorphism of the \hat{l} ¼-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. Journal of Pain, 2005, 6, 159-167.	0.7	331
159	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
160	Mapping of a quantitative trait locus for morphine withdrawal severity. Mammalian Genome, 2004, 15, 610-617.	1.0	26
161	Sex differences in pain and analgesia: the role of gonadal hormones. European Journal of Pain, 2004, 8, 397-411.	1.4	447
162	Acute progesterone can recruit sex-specific neurochemical mechanisms mediating swim stress-induced and κ-opioid analgesia in mice. Hormones and Behavior, 2004, 46, 467-473.	1.0	21

#	Article	IF	CITATIONS
163	Modulation of morphine analgesia by site-specific N -methyl-d-aspartate receptor antagonists: dependence on sex, site of antagonism, morphine dose, and time. Pain, 2004, 109, 274-283.	2.0	68
164	What should we be measuring in behavioral studies of chronic pain in animals?. Pain, 2004, 112, 12-15.	2.0	252
165	Qualitative sex differences in κ-opioid analgesia in mice are dependent on age. Neuroscience Letters, 2004, 363, 178-181.	1.0	21
166	Paclitaxel-induced neuropathic hypersensitivity in mice: Responses in 10 inbred mouse strains. Life Sciences, 2004, 74, 2593-2604.	2.0	123
167	Onderzoek naar sekse- en genderspecifieke verschillen bij pijn en analgesie: een consensusverslag 1. , 2004, , 1287-1301.		0
168	The Interaction Between Sex and Genotype in the Mediation of Pain and Analgesia: Sex, Pain and Redheads. BMC News and Views, 2004, 4, .	0.0	0
169	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	7.7	390
170	Characterization of Cyclophosphamide Cystitis, a Model of Visceral and Referred Pain, in the Mouse: Species and Strain Differences. Journal of Urology, 2003, 170, 1008-1012.	0.2	101
171	Serotonin–GABA interactions in the modulation of mu- and kappa-opioid analgesia. Neuropharmacology, 2003, 44, 304-310.	2.0	38
172	Genotype-dependence of gabapentin and pregabalin sensitivity: the pharmacogenetic mediation of analgesia is specific to the type of pain being inhibited. Pain, 2003, 106, 325-335.	2.0	64
173	Interaction between sex and genotype in the mediation of pain and pain inhibition. Seminars in Pain Medicine, 2003, 1, 197-205.	0.4	14
174	The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4867-4872.	3.3	469
175	The Heritability of Antinociception: Common Pharmacogenetic Mediation of Five Neurochemically Distinct Analgesics. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 547-559.	1.3	95
176	The Heritability of Antinociception II: Pharmacogenetic Mediation of Three Over-the-Counter Analgesics in Mice. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 755-764.	1.3	60
177	Genetic evidence for the correlation of deep dorsal horn fos protein immunoreactivity with tonic formalin pain behavior. Journal of Pain, 2002, 3, 181-189.	0.7	25
178	Identification of quantitative trait loci for chemical/inflammatory nociception in mice. Pain, 2002, 96, 385-391.	2.0	40
179	Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain, 2002, 97, 75-86.	2.0	175
180	Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience, 2002, 115, 463-469.	1.1	128

#	Article	IF	CITATIONS
181	Genetic variation in morphine analgesic tolerance. Pharmacology Biochemistry and Behavior, 2002, 73, 821-828.	1.3	98
182	Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neuroscience and Biobehavioral Reviews, 2002, 26, 907-923.	2.9	285
183	Influences of laboratory environment on behavior. Nature Neuroscience, 2002, 5, 1101-1102.	7.1	228
184	The pharmacogenetics of analgesia: toward a genetically-based approach to pain management. Pharmacogenomics, 2001, 2, 177-194.	0.6	55
185	The effect of genotype on sensitivity to electroacupuncture analgesia. Pain, 2001, 91, 5-13.	2.0	50
186	Morphine tolerance and dependence in nociceptin/orphanin fq transgenic knock-out mice. Neuroscience, 2001, 104, 217-222.	1.1	54
187	Measuring pain in the (knockout) mouse: big challenges in a small mammal. Behavioural Brain Research, 2001, 125, 65-73.	1.2	103
188	Endogenous nociceptin signaling and stress-induced analgesia. NeuroReport, 2001, 12, 3009-3013.	0.6	39
189	Quantitative trait loci influencing morphine antinociception in four mapping populations. Mammalian Genome, 2001, 12, 546-553.	1.0	69
190	In Silico Mapping of Mouse Quantitative Trait Loci. Science, 2001, 294, 2423a-2423.	6.0	61
191	Assessing Nociception in Murine Subjects. Frontiers in Neuroscience, 2001, , .	0.0	16
192	Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neuroscience and Biobehavioral Reviews, 2000, 24, 375-389.	2.9	300
193	Disparate spinal and supraspinal opioid antinociceptive responses in β-endorphin-deficient mutant mice. Neuroscience, 2000, 101, 709-717.	1.1	23
194	Effects of supraspinal orphanin FQ/nociceptin. Peptides, 2000, 21, 1037-1045.	1.2	49
195	Pain Genes?: Natural Variation and Transgenic Mutants. Annual Review of Neuroscience, 2000, 23, 777-811.	5.0	148
196	Identifying pain genes: Bottom-up and top-down approaches. Journal of Pain, 2000, 1, 66-80.	0.7	37
197	Hot and Cold Nociception Are Genetically Correlated. Journal of Neuroscience, 1999, 19, RC25-RC25.	1.7	32
198	The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proceedings of the United States of America, 1999, 96, 7744-7751.	3.3	388

#	Article	IF	CITATIONS
199	Mu and delta opioid receptor analgesia, binding density, and mRNA levels in mice selectively bred for high and low analgesia. Brain Research, 1999, 816, 381-389.	1.1	29
200	Ethanol oral self-administration is increased in mutant mice with decreased β-endorphin expression1Published on the World Wide Web on 1 April 1999.1. Brain Research, 1999, 835, 62-67.	1.1	85
201	Sex differences in opioid analgesia. Pain Forum, 1999, 8, 48-50.	1.1	17
202	Strain-dependent effects of supraspinal orphanin FQ/nociceptin on thermal nociceptive sensitivity in mice. Neuroscience Letters, 1999, 261, 147-150.	1.0	30
203	Heritability of nociception II. †Types' of nociception revealed by genetic correlation analysis. Pain, 1999, 80, 83-93.	2.0	217
204	Heritability of nociception I: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain, 1999, 80, 67-82.	2.0	581
205	Differential effects of chemical and mechanical colonic irritation on behavioral pain response to intraperitoneal acetic acid in mice. Pain, 1999, 81, 179-186.	2.0	81
206	Pharmacogenetic variability in neuronal nicotinic receptor-mediated antinociception. Pharmacogenetics and Genomics, 1999, 9, 619-626.	5.7	22
207	Pharmacogenetic variability in neuronal nicotinic receptor-mediated antinociception. Pharmacogenetics and Genomics, 1999, 9, 619-626.	0.7	0
208	Ginsenoside Rf, a trace component of ginseng root, produces antinociception in mice. Brain Research, 1998, 792, 218-228.	1.1	71
209	Differences in delta opioid receptor antinociception, binding, and mRNA levels between BALB/c and CXBK mice. Brain Research, 1998, 805, 131-137.	1.1	12
210	[Phe1f͡ˈ(CH2-NH)Gly2]nociceptin-(1-13)-NH2 acts as an agonist of the orphanin FQ/nociceptin receptor in vivo. European Journal of Pharmacology, 1998, 357, R1-R3.	1.7	44
211	Toward a functional characterization of orphanin FQ/nociceptin: Parametric and organismic considerations. European Journal of Pain, 1998, 2, 278-280.	1.4	0
212	Scoring the mouse formalin test: Validation study. European Journal of Pain, 1998, 2, 351-358.	1.4	57
213	Acute morphine dependence in mice selectively-bred for high and low analgesia. Neuroscience Letters, 1998, 256, 120-122.	1.0	9
214	The effect of genotype on sensitivity to inflammatory nociception: characterization of resistant (A/J) and sensitive (C57BL/6J) inbred mouse strains. Pain, 1998, 76, 115-125.	2.0	56
215	Transgenic studies of pain. Pain, 1998, 77, 107-128.	2.0	102

216 Opioid-induced analgesia and respiratory depression: Sex differences. , 1998, , 93-100.

2

#	Article	IF	CITATIONS
217	Identification of a Sex-Specific Quantitative Trait Locus Mediating Nonopioid Stress-Induced Analgesia in Female Mice. Journal of Neuroscience, 1997, 17, 7995-8002.	1.7	111
218	Involvement of endogenous Orphanin FQ in electroacupuncture-induced analgesia. NeuroReport, 1997, 8, 497-500.	0.6	72
219	Blockade of morphine supersensitivity by an antisense oligodeoxynucleotide targeting the delta opioid receptor (DOR-1). Life Sciences, 1997, 60, PL155-PL159.	2.0	6
220	Genetic sensitivity to hot-plate nociception in DBA/2J and C57BL/6J inbred mouse strains: possible sex-specific mediation by l´2-opioid receptors. Pain, 1997, 70, 267-277.	2.0	98
221	Nociceptive and morphine antinociceptive sensitivity of 129 and C57BL/6 inbred mouse strains: Implications for transgenic knock-out studies. European Journal of Pain, 1997, 1, 293-297.	1.4	95
222	Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia: antagonism in brain and potentiation in spinal cord of the rat. British Journal of Pharmacology, 1997, 120, 676-680.	2.7	215
223	Sex and Genotype Determine the Selective Activation of Neurochemically-Distinct Mechanisms of Swim Stress-Induced Analgesia. Pharmacology Biochemistry and Behavior, 1997, 56, 61-66.	1.3	77
224	Functional antagonism of μ-, δ- and κ-opioid antinociception by orphanin FQ. Neuroscience Letters, 1996, 214, 131-134.	1.0	224
225	Orphanin FQ is a functional anti-opioid peptide. Neuroscience, 1996, 75, 333-337.	1.1	369
226	Opioid and Nonopioid Swim Stress-Induced Analgesia: A Parametric Analysis in Mice. Physiology and Behavior, 1996, 59, 123-132.	1.0	124
227	The genetics of pain and pain inhibition Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3048-3055.	3.3	131
228	Orphanin FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. NeuroReport, 1996, 7, 2125-2129.	0.6	138
229	Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3995-4000.	3.3	293
230	Oligogenic determination of morphine analgesic magnitude: A genetic analysis of selectively bred mouse lines. Behavior Genetics, 1995, 25, 397-406.	1.4	21
231	Antinociception following 1,3,-di-o-tolylguanidine, a selective σ receptor ligand. Pharmacology Biochemistry and Behavior, 1995, 50, 587-592.	1.3	16
232	1,3-di-o-Tolylguanidine (DTG) differentially affects acute and tonic formalin pain: Antagonism by rimcazole. Pharmacology Biochemistry and Behavior, 1995, 52, 175-178.	1.3	12
233	Neonatal testosterone exposure influences neurochemistry of non-opioid swim stress-induced analgesia in adult mice. Pain, 1995, 63, 321-326.	2.0	60
234	Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/ and DBA/2 strains. Life Sciences, 1995, 57, PL117-PL124.	2.0	87

#	Article	IF	CITATIONS
235	One or two genetic loci mediate high opiate analgesia in selectively bred mice. Pain, 1995, 60, 125-135.	2.0	40
236	μ-Opiate receptor binding is up-regulated in mice selectively bred for high stress-induced analgesia. Brain Research, 1994, 653, 16-22.	1.1	48
237	Antagonism of the non-opioid component of ethanol-induced analgesia by the NMDA receptor antagonist MK-801. Brain Research, 1993, 602, 126-130.	1.1	30
238	Levorphanol and swim stress-induced analgesia in selectively bred mice: evidence for genetic commonalities. Brain Research, 1993, 608, 353-357.	1.1	27
239	Sex differences in the antagonism of swim stress-induced analgesia: effects of gonadectomy and estrogen replacement. Pain, 1993, 53, 17-25.	2.0	230
240	The NMDA receptor antagonist MK-801 prevents long-lasting non-associative morphine tolerance in the rat. Brain Research, 1992, 575, 304-308.	1.1	135
241	N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 blocks non-opioid stress-induced analgesia. II. Comparison across three swim-stress paradigms in selectively bred mice. Brain Research, 1992, 578, 197-203.	1.1	87
242	Tactile system and nociception. , 0, , 55-64.		0

15