
Jeffrey S Mogil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7831707/publications.pdf Version: 2024-02-01

IFFEREV S MOCIL

#	Article	IF	CITATIONS
1	The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain, 2020, 161, 1976-1982.	2.0	1,880
2	Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, 18, 1081-1083.	7.1	1,041
3	The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genetics, 2004, 36, 1133-1137.	9.4	1,034
4	Coding of facial expressions of pain in the laboratory mouse. Nature Methods, 2010, 7, 447-449.	9.0	1,024
5	Animal models of pain: progress and challenges. Nature Reviews Neuroscience, 2009, 10, 283-294.	4.9	912
6	Studying sex and gender differences in pain and analgesia: A consensus report. Pain, 2007, 132, S26-S45.	2.0	797
7	Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nature Reviews Neuroscience, 2012, 13, 859-866.	4.9	750
8	Social Modulation of Pain as Evidence for Empathy in Mice. Science, 2006, 312, 1967-1970.	6.0	710
9	Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nature Methods, 2014, 11, 629-632.	9.0	699
10	Heritability of nociception I: Responses of 11 inbred mouse strains on 12 measures of nociception. Pain, 1999, 80, 67-82.	2.0	581
11	The Rat Grimace Scale: A Partially Automated Method for Quantifying Pain in the Laboratory Rat via Facial Expressions. Molecular Pain, 2011, 7, 1744-8069-7-55.	1.0	521
12	The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4867-4872.	3.3	469
13	Sex differences in pain and analgesia: the role of gonadal hormones. European Journal of Pain, 2004, 8, 397-411.	1.4	447
14	Spinal Cord Toll-Like Receptor 4 Mediates Inflammatory and Neuropathic Hypersensitivity in Male But Not Female Mice. Journal of Neuroscience, 2011, 31, 15450-15454.	1.7	394
15	The nature and identification of quantitative trait loci: a community's view. Nature Reviews Genetics, 2003, 4, 911-916.	7.7	390
16	The genetic mediation of individual differences in sensitivity to pain and its inhibition. Proceedings of the United States of America, 1999, 96, 7744-7751.	3.3	388
17	Expression of CCR2 in Both Resident and Bone Marrow-Derived Microglia Plays a Critical Role in Neuropathic Pain. Journal of Neuroscience, 2007, 27, 12396-12406.	1.7	381
18	Orphanin FQ is a functional anti-opioid peptide. Neuroscience, 1996, 75, 333-337.	1.1	369

#	Article	IF	CITATIONS
19	Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nature Reviews Neuroscience, 2020, 21, 353-365.	4.9	367
20	A biopsychosocial formulation of pain communication Psychological Bulletin, 2011, 137, 910-939.	5.5	364
21	Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nature Medicine, 2012, 18, 595-599.	15.2	335
22	The A118G single nucleotide polymorphism of the μ-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans. Journal of Pain, 2005, 6, 159-167.	0.7	331
23	Pain genetics: past, present and future. Trends in Genetics, 2012, 28, 258-266.	2.9	308
24	Sex differences in thermal nociception and morphine antinociception in rodents depend on genotype. Neuroscience and Biobehavioral Reviews, 2000, 24, 375-389.	2.9	300
25	The case for the inclusion of female subjects in basic science studies of pain. Pain, 2005, 117, 1-5.	2.0	300
26	Absence of opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3995-4000.	3.3	293
27	Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neuroscience and Biobehavioral Reviews, 2002, 26, 907-923.	2.9	285
28	What should we be measuring in behavioral studies of chronic pain in animals?. Pain, 2004, 112, 12-15.	2.0	252
29	Animal models and the prediction of efficacy in clinical trials of analgesic drugs: A critical appraisal and call for uniform reporting standards. Pain, 2008, 139, 243-247.	2.0	251
30	Sex differences in neuroimmunity and pain. Journal of Neuroscience Research, 2017, 95, 500-508.	1.3	242
31	Sex differences in the antagonism of swim stress-induced analgesia: effects of gonadectomy and estrogen replacement. Pain, 1993, 53, 17-25.	2.0	230
32	Influences of laboratory environment on behavior. Nature Neuroscience, 2002, 5, 1101-1102.	7.1	228
33	Functional antagonism of μ-, δ- and κ-opioid antinociception by orphanin FQ. Neuroscience Letters, 1996, 214, 131-134.	1.0	224
34	The necessity of animal models in pain research. Pain, 2010, 151, 12-17.	2.0	218
35	Heritability of nociception II. †Types' of nociception revealed by genetic correlation analysis. Pain, 1999, 80, 83-93.	2.0	217
36	Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia: antagonism in brain and potentiation in spinal cord of the rat. British Journal of Pharmacology, 1997, 120, 676-680.	2.7	215

#	Article	IF	CITATIONS
37	Melanocortin-1 receptor gene variants affect pain and Â-opioid analgesia in mice and humans. Journal of Medical Genetics, 2005, 42, 583-587.	1.5	215
38	Comparing phenotypic variation between inbred and outbred mice. Nature Methods, 2018, 15, 994-996.	9.0	192
39	Constitutive μ-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence. Science, 2013, 341, 1394-1399.	6.0	191
40	Reducing Social Stress Elicits Emotional Contagion of Pain in Mouse and Human Strangers. Current Biology, 2015, 25, 326-332.	1.8	189
41	Increasing placebo responses over time in U.S. clinical trials of neuropathic pain. Pain, 2015, 156, 2616-2626.	2.0	188
42	Sex inclusion in basic research drives discovery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5257-5258.	3.3	187
43	The Pain Genes Database : An interactive web browser of pain-related transgenic knockout studies. Pain, 2007, 131, 3e1-3e4.	2.0	186
44	Distinguishing between Exploratory and Confirmatory Preclinical Research Will Improve Translation. PLoS Biology, 2014, 12, e1001863.	2.6	185
45	Sex and gender differences in pain and analgesia. Progress in Brain Research, 2010, 186, 140-157.	0.9	183
46	Patterns of pain: Meta-analysis of microarray studies of pain. Pain, 2011, 152, 1888-1898.	2.0	176
47	Heritability of nociception. III. Genetic relationships among commonly used assays of nociception and hypersensitivity. Pain, 2002, 97, 75-86.	2.0	175
48	Oxytocin-Induced Analgesia and Scratching Are Mediated by the Vasopressin-1A Receptor in the Mouse. Journal of Neuroscience, 2010, 30, 8274-8284.	1.7	175
49	Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats. Pain, 2018, 159, 1752-1763.	2.0	165
50	Progress in Genetic Studies of Pain and Analgesia. Annual Review of Pharmacology and Toxicology, 2009, 49, 97-121.	4.2	155
51	Remote Optogenetic Activation and Sensitization of Pain Pathways in Freely Moving Mice. Journal of Neuroscience, 2013, 33, 18631-18640.	1.7	155
52	Variable sensitivity to noxious heat is mediated by differential expression of the CGRP gene. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12938-12943.	3.3	151
53	Empathy hurts: Compassion for another increases both sensory and affective components of pain perception. Pain, 2008, 136, 168-176.	2.0	150
54	Using the Mouse Grimace Scale to reevaluate the efficacy of postoperative analgesics in laboratory mice. Journal of the American Association for Laboratory Animal Science, 2012, 51, 42-9.	0.6	150

#	Article	IF	CITATIONS
55	Pain Genes?: Natural Variation and Transgenic Mutants. Annual Review of Neuroscience, 2000, 23, 777-811.	5.0	148
56	Orphanin FQ acts as a supraspinal, but not a spinal, anti-opioid peptide. NeuroReport, 1996, 7, 2125-2129.	0.6	138
57	The NMDA receptor antagonist MK-801 prevents long-lasting non-associative morphine tolerance in the rat. Brain Research, 1992, 575, 304-308.	1.1	135
58	The genetics of pain and pain inhibition Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3048-3055.	3.3	131
59	Naloxone-precipitated withdrawal jumping in 11 inbred mouse strains: evidence for common genetic mechanisms in acute and chronic morphine physical dependence. Neuroscience, 2002, 115, 463-469.	1.1	128
60	Opioid and Nonopioid Swim Stress-Induced Analgesia: A Parametric Analysis in Mice. Physiology and Behavior, 1996, 59, 123-132.	1.0	124
61	Paclitaxel-induced neuropathic hypersensitivity in mice: Responses in 10 inbred mouse strains. Life Sciences, 2004, 74, 2593-2604.	2.0	123
62	Transgenic Expression of a Dominant-Negative ASIC3 Subunit Leads to Increased Sensitivity to Mechanical and Inflammatory Stimuli. Journal of Neuroscience, 2005, 25, 9893-9901.	1.7	115
63	Acute inflammatory response via neutrophil activation protects against the development of chronic pain. Science Translational Medicine, 2022, 14, eabj9954.	5.8	115
64	ADAMTS-5 deficient mice do not develop mechanical allodynia associated with osteoarthritis following medial meniscal destabilization. Osteoarthritis and Cartilage, 2010, 18, 572-580.	0.6	114
65	Social approach to pain in laboratory mice. Social Neuroscience, 2010, 5, 163-170.	0.7	113
66	Identification of a Sex-Specific Quantitative Trait Locus Mediating Nonopioid Stress-Induced Analgesia in Female Mice. Journal of Neuroscience, 1997, 17, 7995-8002.	1.7	111
67	Repeated Vulvovaginal Fungal Infections Cause Persistent Pain in a Mouse Model of Vulvodynia. Science Translational Medicine, 2011, 3, 101ra91.	5.8	111
68	Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction. Nature Neuroscience, 2011, 14, 1569-1573.	7.1	110
69	Social modulation of and by pain in humans and rodents. Pain, 2015, 156, S35-S41.	2.0	107
70	Optogenetic Silencing of Na _v 1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain. ENeuro, 2016, 3, ENEURO.0140-15.2016.	0.9	107
71	The MNK–elF4E Signaling Axis Contributes to Injury-Induced Nociceptive Plasticity and the Development of Chronic Pain. Journal of Neuroscience, 2017, 37, 7481-7499.	1.7	106
72	Measuring pain in the (knockout) mouse: big challenges in a small mammal. Behavioural Brain Research, 2001, 125, 65-73.	1.2	103

#	Article	IF	CITATIONS
73	Transgenic studies of pain. Pain, 1998, 77, 107-128.	2.0	102
74	Individual responder analyses for pain: does one pain scale fit all?. Trends in Pharmacological Sciences, 2005, 26, 125-130.	4.0	102
75	A deep neural network to assess spontaneous pain from mouse facial expressions. Molecular Pain, 2018, 14, 174480691876365.	1.0	102
76	Characterization of Cyclophosphamide Cystitis, a Model of Visceral and Referred Pain, in the Mouse: Species and Strain Differences. Journal of Urology, 2003, 170, 1008-1012.	0.2	101
77	Hypolocomotion, Asymmetrically Directed Behaviors (Licking, Lifting, Flinching, and Shaking) and Dynamic Weight Bearing (Gait) Changes are Not Measures of Neuropathic Pain in Mice. Molecular Pain, 2010, 6, 1744-8069-6-34.	1.0	101
78	Genetic sensitivity to hot-plate nociception in DBA/2J and C57BL/6J inbred mouse strains: possible sex-specific mediation by δ2-opioid receptors. Pain, 1997, 70, 267-277.	2.0	98
79	Genetic variation in morphine analgesic tolerance. Pharmacology Biochemistry and Behavior, 2002, 73, 821-828.	1.3	98
80	Influence of genotype, dose and sex on pruritogen-induced scratching behavior in the mouse. Pain, 2006, 124, 50-58.	2.0	96
81	Nociceptive and morphine antinociceptive sensitivity of 129 and C57BL/6 inbred mouse strains: Implications for transgenic knock-out studies. European Journal of Pain, 1997, 1, 293-297.	1.4	95
82	The Heritability of Antinociception: Common Pharmacogenetic Mediation of Five Neurochemically Distinct Analgesics. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 547-559.	1.3	95
83	Translational pain assessment: could natural animal models be the missing link?. Pain, 2017, 158, 1633-1646.	2.0	88
84	N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 blocks non-opioid stress-induced analgesia. II. Comparison across three swim-stress paradigms in selectively bred mice. Brain Research, 1992, 578, 197-203.	1.1	87
85	Localization to chromosome 10 of a locus influencing morphine analgesia in crosses derived from C57BL/ and DBA/2 strains. Life Sciences, 1995, 57, PL117-PL124.	2.0	87
86	Ethanol oral self-administration is increased in mutant mice with decreased β-endorphin expression1Published on the World Wide Web on 1 April 1999.1. Brain Research, 1999, 835, 62-67.	1.1	85
87	Epiregulin and EGFR interactions are involved in pain processing. Journal of Clinical Investigation, 2017, 127, 3353-3366.	3.9	85
88	Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes. Cell Reports, 2017, 19, 1940-1952.	2.9	83
89	Experimentally Induced Mood Changes Preferentially Affect Pain Unpleasantness. Journal of Pain, 2008, 9, 784-791.	0.7	82
90	Differential effects of chemical and mechanical colonic irritation on behavioral pain response to intraperitoneal acetic acid in mice. Pain, 1999, 81, 179-186.	2.0	81

#	Article	IF	CITATIONS
91	Pain modality- and sex-specific effects of COMT genetic functional variants. Pain, 2013, 154, 1368-1376.	2.0	81
92	The development and use of facial grimace scales for pain measurement in animals. Neuroscience and Biobehavioral Reviews, 2020, 116, 480-493.	2.9	81
93	mTORC1 inhibition induces pain via IRS-1-dependent feedback activation of ERK. Pain, 2013, 154, 1080-1091.	2.0	79
94	Sex and Genotype Determine the Selective Activation of Neurochemically-Distinct Mechanisms of Swim Stress-Induced Analgesia. Pharmacology Biochemistry and Behavior, 1997, 56, 61-66.	1.3	77
95	Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain, 2013, 154, 1254-1262.	2.0	76
96	Modulation of Mechanical and Thermal Nociceptive Sensitivity in the Laboratory Mouse by Behavioral State. Journal of Pain, 2008, 9, 174-184.	0.7	75
97	Conceptual complexity of gender and its relevance to pain. Pain, 2018, 159, 2137-2141.	2.0	75
98	Involvement of endogenous Orphanin FQ in electroacupuncture-induced analgesia. NeuroReport, 1997, 8, 497-500.	0.6	72
99	Innovations and advances in modelling and measuring pain in animals. Nature Reviews Neuroscience, 2022, 23, 70-85.	4.9	72
100	Ginsenoside Rf, a trace component of ginseng root, produces antinociception in mice. Brain Research, 1998, 792, 218-228.	1.1	71
101	Ethnicity interacts with the OPRM1 gene in experimental pain sensitivity. Pain, 2012, 153, 1610-1619.	2.0	71
102	Screening for pain phenotypes: Analysis of three congenic mouse strains on a battery of nine nociceptive assays. Pain, 2006, 126, 24-34.	2.0	70
103	Ensuring transparency and minimization of methodologic bias in preclinical pain research. Pain, 2016, 157, 901-909.	2.0	70
104	Quantitative trait loci influencing morphine antinociception in four mapping populations. Mammalian Genome, 2001, 12, 546-553.	1.0	69
105	Modulation of morphine analgesia by site-specific N -methyl-d-aspartate receptor antagonists: dependence on sex, site of antagonism, morphine dose, and time. Pain, 2004, 109, 274-283.	2.0	68
106	The Magnitude of Mechanical Allodynia in a Rodent Model of Lumbar Radiculopathy is Dependent on Strain and Sex. Spine, 2005, 30, 1821-1827.	1.0	65
107	Control of Synaptic Plasticity and Memory via Suppression of Poly(A)-Binding Protein. Neuron, 2013, 78, 298-311.	3.8	65
108	Increased pain sensitivity and decreased opioid analgesia in T-cell-deficient mice and implications for sex differences. Pain, 2019, 160, 358-366.	2.0	65

#	Article	IF	CITATIONS
109	Genotype-dependence of gabapentin and pregabalin sensitivity: the pharmacogenetic mediation of analgesia is specific to the type of pain being inhibited. Pain, 2003, 106, 325-335.	2.0	64
110	Varying Perceived Social Threat Modulates Pain Behavior in Male Mice. Journal of Pain, 2011, 12, 125-132.	0.7	64
111	No publication without confirmation. Nature, 2017, 542, 409-411.	13.7	62
112	Single-cell RNA sequencing reveals time- and sex-specific responses of mouse spinal cord microglia to peripheral nerve injury and links ApoE to chronic pain. Nature Communications, 2022, 13, 843.	5.8	62
113	In Silico Mapping of Mouse Quantitative Trait Loci. Science, 2001, 294, 2423a-2423.	6.0	61
114	Functional genomics of pain in analgesic drug development and therapy. , 2013, 139, 60-70.		61
115	Neonatal testosterone exposure influences neurochemistry of non-opioid swim stress-induced analgesia in adult mice. Pain, 1995, 63, 321-326.	2.0	60
116	The Heritability of Antinociception II: Pharmacogenetic Mediation of Three Over-the-Counter Analgesics in Mice. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 755-764.	1.3	60
117	The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Science Translational Medicine, 2015, 7, 287ra72.	5.8	59
118	Scoring the mouse formalin test: Validation study. European Journal of Pain, 1998, 2, 351-358.	1.4	57
119	Sex-specific Mediation of Opioid-induced Hyperalgesia by the Melanocortin-1 Receptor. Anesthesiology, 2010, 112, 181-188.	1.3	57
120	The effect of genotype on sensitivity to inflammatory nociception: characterization of resistant (A/J) and sensitive (C57BL/6J) inbred mouse strains. Pain, 1998, 76, 115-125.	2.0	56
121	Laboratory environmental factors and pain behavior: the relevance of unknown unknowns to reproducibility and translation. Lab Animal, 2017, 46, 136-141.	0.2	56
122	The pharmacogenetics of analgesia: toward a genetically-based approach to pain management. Pharmacogenomics, 2001, 2, 177-194.	0.6	55
123	Morphine tolerance and dependence in nociceptin/orphanin fq transgenic knock-out mice. Neuroscience, 2001, 104, 217-222.	1.1	54
124	Genetic pathway analysis reveals a major role for extracellular matrix organization in inflammatory and neuropathic pain. Pain, 2019, 160, 932-944.	2.0	53
125	Male-Specific Conditioned Pain Hypersensitivity in Mice and Humans. Current Biology, 2019, 29, 192-201.e4.	1.8	53
126	Are we getting anywhere in human pain genetics?. Pain, 2009, 146, 231-232.	2.0	52

#	Article	IF	CITATIONS
127	The Interaction Between Pain and Social Behavior in Humans and Rodents. Current Topics in Behavioral Neurosciences, 2014, 20, 233-250.	0.8	52
128	Microglia-mediated degradation of perineuronal nets promotes pain. Science, 2022, 377, 80-86.	6.0	52
129	Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes. Pharmacogenetics and Genomics, 2008, 18, 231-241.	0.7	51
130	Perspective: Equality need not be painful. Nature, 2016, 535, S7-S7.	13.7	51
131	The effect of genotype on sensitivity to electroacupuncture analgesia. Pain, 2001, 91, 5-13.	2.0	50
132	Effects of supraspinal orphanin FQ/nociceptin. Peptides, 2000, 21, 1037-1045.	1.2	49
133	A role for PACE4 in osteoarthritis pain: evidence from human genetic association and null mutant phenotype. Annals of the Rheumatic Diseases, 2012, 71, 1042-1048.	0.5	49
134	The surprising empathic abilities of rodents. Trends in Cognitive Sciences, 2012, 16, 143-144.	4.0	49
135	μ-Opiate receptor binding is up-regulated in mice selectively bred for high stress-induced analgesia. Brain Research, 1994, 653, 16-22.	1.1	48
136	Pain research from 1975 to 2007: A categorical and bibliometric meta-trend analysis of every Research Paper published in the journal, Pain. Pain, 2009, 142, 48-58.	2.0	46
137	T-Cell Mediation of Pregnancy Analgesia Affecting Chronic Pain in Mice. Journal of Neuroscience, 2017, 37, 9819-9827.	1.7	46
138	Translational profiling of dorsal root ganglia and spinal cord in a mouse model of neuropathic pain. Neurobiology of Pain (Cambridge, Mass), 2018, 4, 35-44.	1.0	45
139	The translatability of pain across species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190286.	1.8	45
140	Comprehensive analysis of long noncoding RNA expression in dorsal root ganglion reveals cell-type specificity and dysregulation after nerve injury. Pain, 2019, 160, 463-485.	2.0	45
141	[Phe1Ψ(CH2-NH)Gly2]nociceptin-(1-13)-NH2 acts as an agonist of the orphanin FQ/nociceptin receptor in vivo. European Journal of Pharmacology, 1998, 357, R1-R3.	1.7	44
142	The β3 subunit of the Na+,K+-ATPase mediates variable nociceptive sensitivity in the formalin test. Pain, 2009, 144, 294-302.	2.0	43
143	Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition. Science Signaling, 2016, 9, ra32.	1.6	43
144	Spontaneous painful disease in companion animals can facilitate the development of chronic pain therapies for humans. Osteoarthritis and Cartilage, 2018, 26, 175-183.	0.6	41

#	Article	IF	CITATIONS
145	One or two genetic loci mediate high opiate analgesia in selectively bred mice. Pain, 1995, 60, 125-135.	2.0	40
146	Identification of quantitative trait loci for chemical/inflammatory nociception in mice. Pain, 2002, 96, 385-391.	2.0	40
147	Influence of Nociception and Stress-induced Antinociception on Genetic Variation in Isoflurane Anesthetic Potency among Mouse Strains. Anesthesiology, 2005, 103, 751-758.	1.3	40
148	Broad-spectrum analgesic efficacy of IBNtxA is mediated by exon 11-associated splice variants of the mu-opioid receptor gene. Pain, 2014, 155, 2063-2070.	2.0	40
149	Recruitment of Spinoparabrachial Neurons by Dorsal Horn Calretinin Neurons. Cell Reports, 2019, 28, 1429-1438.e4.	2.9	40
150	Endogenous nociceptin signaling and stress-induced analgesia. NeuroReport, 2001, 12, 3009-3013.	0.6	39
151	Ontogeny and phylogeny of facial expression of pain. Pain, 2015, 156, 798-799.	2.0	39
152	Serotonin–GABA interactions in the modulation of mu- and kappa-opioid analgesia. Neuropharmacology, 2003, 44, 304-310.	2.0	38
153	Identifying pain genes: Bottom-up and top-down approaches. Journal of Pain, 2000, 1, 66-80.	0.7	37
154	elF2α phosphorylation controls thermal nociception. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11949-11954.	3.3	37
155	Genome-wide association reveals contribution of MRAS to painful temporomandibular disorder in males. Pain, 2019, 160, 579-591.	2.0	37
156	A data science approach to candidate gene selection of pain regarded as a process of learning and neural plasticity. Pain, 2016, 157, 2747-2757.	2.0	35
157	Cage-lid hanging behavior as a translationally relevant measure of pain in mice. Pain, 2021, 162, 1416-1425.	2.0	35
158	Structural and functional interactions between six-transmembrane μ-opioid receptors and β2-adrenoreceptors modulate opioid signaling. Scientific Reports, 2016, 5, 18198.	1.6	34
159	Translational control of nociception via 4E-binding protein 1. ELife, 2015, 4, .	2.8	34
160	Hot and Cold Nociception Are Genetically Correlated. Journal of Neuroscience, 1999, 19, RC25-RC25.	1.7	32
161	Loss of Neuronal Potassium/Chloride Cotransporter 3 (KCC3) Is Responsible for the Degenerative Phenotype in a Conditional Mouse Model of Hereditary Motor and Sensory Neuropathy Associated with Agenesis of the Corpus Callosum. Journal of Neuroscience, 2012, 32, 3865-3876.	1.7	32
162	The Role of Pain Catastrophizing in Experimental Pain Perception. Pain Practice, 2014, 14, E136-45.	0.9	31

#	Article	IF	CITATIONS
163	Hoxb8 Intersection Defines a Role for <i>Lmx1b</i> in Excitatory Dorsal Horn Neuron Development, Spinofugal Connectivity, and Nociception. Journal of Neuroscience, 2015, 35, 5233-5246.	1.7	31
164	The Genetics of Pain and Analgesia in Laboratory Animals. Methods in Molecular Biology, 2010, 617, 261-278.	0.4	31
165	Antagonism of the non-opioid component of ethanol-induced analgesia by the NMDA receptor antagonist MK-801. Brain Research, 1993, 602, 126-130.	1.1	30
166	Strain-dependent effects of supraspinal orphanin FQ/nociceptin on thermal nociceptive sensitivity in mice. Neuroscience Letters, 1999, 261, 147-150.	1.0	30
167	Mu and delta opioid receptor analgesia, binding density, and mRNA levels in mice selectively bred for high and low analgesia. Brain Research, 1999, 816, 381-389.	1.1	29
168	Role of Central Calcitonin Gene-Related Peptide (CGRP) in Locomotor and Anxiety- and Depression-Like Behaviors in Two Mouse Strains Exhibiting a CGRP-Dependent Difference in Thermal Pain Sensitivity. Journal of Molecular Neuroscience, 2009, 39, 125-136.	1.1	28
169	Levorphanol and swim stress-induced analgesia in selectively bred mice: evidence for genetic commonalities. Brain Research, 1993, 608, 353-357.	1.1	27
170	Sex differences in the effects of amiloride on formalin test nociception in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R335-R342.	0.9	27
171	Differences in the Antinociceptive Effects and Binding Properties of Propranolol and Bupranolol Enantiomers. Journal of Pain, 2015, 16, 1321-1333.	0.7	27
172	Mapping of a quantitative trait locus for morphine withdrawal severity. Mammalian Genome, 2004, 15, 610-617.	1.0	26
173	Pain Reduces Sexual Motivation in Female But Not Male Mice. Journal of Neuroscience, 2014, 34, 5747-5753.	1.7	26
174	Genetic evidence for the correlation of deep dorsal horn fos protein immunoreactivity with tonic formalin pain behavior. Journal of Pain, 2002, 3, 181-189.	0.7	25
175	Long-term male-specific chronic pain via telomere- and p53‑mediated spinal cord cellular senescence. Journal of Clinical Investigation, 2022, 132, .	3.9	25
176	Assessment of Pregabalin Postapproval Trials and the Suggestion of Efficacy for New Indications. JAMA Internal Medicine, 2019, 179, 90.	2.6	24
177	Chronic pain produces hypervigilance to predator odor in mice. Current Biology, 2020, 30, R866-R867.	1.8	24
178	Genome-wide analysis identifies impaired axonogenesis in chronic overlapping pain conditions. Brain, 2022, 145, 1111-1123.	3.7	24
179	Disparate spinal and supraspinal opioid antinociceptive responses in β-endorphin-deficient mutant mice. Neuroscience, 2000, 101, 709-717.	1.1	23
180	MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. Pain, 2020, 161, 47-60.	2.0	23

#	Article	IF	CITATIONS
181	Sources of Individual Differences in Pain. Annual Review of Neuroscience, 2021, 44, 1-25.	5.0	23
182	Pharmacogenetic variability in neuronal nicotinic receptor-mediated antinociception. Pharmacogenetics and Genomics, 1999, 9, 619-626.	5.7	22
183	Oligogenic determination of morphine analgesic magnitude: A genetic analysis of selectively bred mouse lines. Behavior Genetics, 1995, 25, 397-406.	1.4	21
184	Acute progesterone can recruit sex-specific neurochemical mechanisms mediating swim stress-induced and \hat{I}^2 -opioid analgesia in mice. Hormones and Behavior, 2004, 46, 467-473.	1.0	21
185	Qualitative sex differences in κ-opioid analgesia in mice are dependent on age. Neuroscience Letters, 2004, 363, 178-181.	1.0	21
186	Gnao1 (GαO protein) is a likely genetic contributor to variation in physical dependence on opioids in mice. Neuroscience, 2009, 162, 1255-1264.	1.1	21
187	The Etiology and Symptomatology of Spontaneous Pain. Journal of Pain, 2012, 13, 932-933.	0.7	20
188	Modulation of social behavior and dominance status by chronic pain in mice. Genes, Brain and Behavior, 2019, 18, e12514.	1.1	20
189	Expression Genetics Identifies Spinal Mechanisms Supporting Formalin Late Phase Behaviors. Molecular Pain, 2010, 6, 1744-8069-6-11.	1.0	19
190	Quantifying Blood-Spinal Cord Barrier Permeability after Peripheral Nerve Injury in the Living Mouse. Molecular Pain, 2014, 10, 1744-8069-10-60.	1.0	19
191	Carriers of Recessive <i>WNK1</i> HSN2Mutations for Hereditary Sensory and Autonomic Neuropathy Type 2 (HSAN2) Are More Sensitive to Thermal Stimuli. Journal of Neuroscience, 2009, 29, 2162-2166.	1.7	18
192	A systematic review and meta-analysis of pregabalin preclinical studies. Pain, 2020, 161, 684-693.	2.0	18
193	Sex differences in opioid analgesia. Pain Forum, 1999, 8, 48-50.	1.1	17
194	The influence of aging and duration of nerve injury on the antiallodynic efficacy of analgesics in laboratory mice. Pain Reports, 2020, 5, e824.	1.4	17
195	Mice are people too: Increasing evidence for cognitive, emotional and social capabilities in laboratory rodents Canadian Psychology, 2019, 60, 14-20.	1.4	17
196	Antinociception following 1,3,-di-o-tolylguanidine, a selective σ receptor ligand. Pharmacology Biochemistry and Behavior, 1995, 50, 587-592.	1.3	16
197	Serotonin-Induced Hypersensitivity via Inhibition of Catechol O-Methyltransferase Activity. Molecular Pain, 2012, 8, 1744-8069-8-25.	1.0	16
198	Assessing Nociception in Murine Subjects. Frontiers in Neuroscience, 2001, , .	0.0	16

#	Article	IF	CITATIONS
199	Social propinquity in rodents as measured by tube cooccupancy differs between inbred and outbred genotypes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5515-5520.	3.3	15
200	Efficacy of ketamine in relieving neuropathic pain: a systematic review and meta-analysis of animal studies. Pain, 2021, 162, 2320-2330.	2.0	15
201	Interaction between sex and genotype in the mediation of pain and pain inhibition. Seminars in Pain Medicine, 2003, 1, 197-205.	0.4	14
202	Sex-based divergence of mechanisms underlying pain and pain inhibition. Current Opinion in Behavioral Sciences, 2018, 23, 113-117.	2.0	14
203	1,3-di-o-Tolylguanidine (DTG) differentially affects acute and tonic formalin pain: Antagonism by rimcazole. Pharmacology Biochemistry and Behavior, 1995, 52, 175-178.	1.3	12
204	Differences in delta opioid receptor antinociception, binding, and mRNA levels between BALB/c and CXBK mice. Brain Research, 1998, 805, 131-137.	1.1	12
205	Conditioned pain modulation in rodents can feature hyperalgesia or hypoalgesia depending on test stimulus intensity. Pain, 2019, 160, 784-792.	2.0	10
206	Acute morphine dependence in mice selectively-bred for high and low analgesia. Neuroscience Letters, 1998, 256, 120-122.	1.0	9
207	The Yin and Yang of pain: variability in formalin test nociception and morphine analgesia produced by the Yin Yang 1 transcription factor gene. Genes, Brain and Behavior, 2013, 12, 405-413.	1.1	9
208	Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test. Genes, Brain and Behavior, 2016, 15, 604-615.	1.1	9
209	Early weaning impairs a social contagion of painâ€related stretching behavior in mice. Developmental Psychobiology, 2016, 58, 1101-1107.	0.9	9
210	Region-specific changes of calcium/calmodulin-dependent protein kinase IV in the mouse brain following chronic morphine treatment. NeuroReport, 2005, 16, 879-882.	0.6	8
211	The AcB/BcA Recombinant Congenic Strains of Mice: Strategies for Phenotype Dissection, Mapping and Cloning of Quantitative Trait Genes. Novartis Foundation Symposium, 2007, 281, 141-155.	1.2	8
212	Imputation of truncated p-values for meta-analysis methods and its genomic application. Annals of Applied Statistics, 2014, 8, 2150-2174.	0.5	8
213	Molecular genetic mechanisms of allelic specific regulation of murine Comt expression. Pain, 2015, 156, 1965-1977.	2.0	8
214	Mice, Pain, and Empathy. Science, 2006, 314, 253-253.	6.0	7
215	Chapter 23 Sex, gender and pain. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2006, 81, 325-341.	1.0	7
216	Mast cell stabilizer ketotifen fumarate reverses inflammatory but not neuropathic-induced mechanical pain in mice. Pain Reports, 2021, 6, e902.	1.4	7

#	Article	IF	CITATIONS
217	Blockade of morphine supersensitivity by an antisense oligodeoxynucleotide targeting the delta opioid receptor (DOR-1). Life Sciences, 1997, 60, PL155-PL159.	2.0	6
218	Pain Testing in the Laboratory Mouse. , 2008, , 549-560.		6
219	The genetics of pain. , 2006, , 159-174.		6
220	mTORC2 mediates structural plasticity in distal nociceptive endings that contributes to pain hypersensitivity following inflammation. Journal of Clinical Investigation, 2022, 132, .	3.9	6
221	Positional cloning of a quantitative trait locus contributing to pain sensitivity: possible mediation by <i>Tyrp1</i> . Genes, Brain and Behavior, 2010, 9, 856-867.	1.1	5
222	Translation regulation in the spinal dorsal horn – A key mechanism for development of chronic pain. Neurobiology of Pain (Cambridge, Mass), 2018, 4, 20-26.	1.0	5
223	Identification and characterization of novel candidate compounds targeting 6―and 7â€transmembrane μâ€opioid receptor isoforms. British Journal of Pharmacology, 2021, 178, 2709-2726.	2.7	4
224	Contextual control of conditioned pain tolerance and endogenous analgesic systems. ELife, 2022, 11, .	2.8	4
225	Stats: multiple experiments test biomedical conclusions. Nature, 2019, 569, 192-192.	13.7	3
226	Introducing the Biennial Review of Pain. Pain, 2011, 152, S1.	2.0	2
227	Opioid-induced analgesia and respiratory depression: Sex differences. , 1998, , 93-100.		2
228	Introducing Pain Classics : A special review series for PAIN®. Pain, 2014, 155, 207.	2.0	1
229	Reply. Pain, 2015, 156, 1828-1829.	2.0	1
230	Genetics of Opioid Actions. , 2011, , 457-497.		1
231	Olfactory exposure to late-pregnant and lactating mice causes stress-induced analgesia in male mice. Science Advances, 2022, 8, .	4.7	1
232	Toward a functional characterization of orphanin FQ/nociceptin: Parametric and organismic considerations. European Journal of Pain, 1998, 2, 278-280.	1.4	0
233	Reply to Vierck et al. comment on Mogil and Crager (2004). Pain, 2005, 114, 523-524.	2.0	0

#	Article	IF	CITATIONS
235	ISDN2014_0393: A role for the transcription factor lmx1b in pain modality discrimination. International Journal of Developmental Neuroscience, 2015, 47, 115-116.	0.7	0
236	John K. Belknap (1943–2017). Genes, Brain and Behavior, 2017, 16, 489-489.	1.1	0
237	Friends in pain: pain tolerance in a social network. Scandinavian Journal of Pain, 2018, 18, 343-344.	0.5	Ο
238	Response to Moisset et al Pain, 2020, 161, 2427-2428.	2.0	0
239	Onderzoek naar sekse- en genderspecifieke verschillen bij pijn en analgesie: een consensusverslag 1. , 2004, , 1287-1301.		0
240	The Interaction Between Sex and Genotype in the Mediation of Pain and Analgesia: Sex, Pain and Redheads. BMC News and Views, 2004, 4, .	0.0	0
241	Genética del dolor. , 2007, , 161-176.		Ο
242	Pharmacogenetic variability in neuronal nicotinic receptor-mediated antinociception. Pharmacogenetics and Genomics, 1999, 9, 619-626.	0.7	0