Ingolf D Steffan-Dewenter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7831617/publications.pdf

Version: 2024-02-01

263 papers 41,566 citations

4370 86 h-index 193 g-index

272 all docs

272 docs citations

times ranked

272

23274 citing authors

#	Article	IF	CITATIONS
1	Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 303-313.	1.2	4,383
2	Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 2005, 8, 857-874.	3.0	3,245
3	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	6.0	1,767
4	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	4.7	1,443
5	Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10, 299-314.	3.0	1,096
6	Extinction debt: a challenge for biodiversity conservation. Trends in Ecology and Evolution, 2009, 24, 564-571.	4.2	1,053
7	Landscape effects on crop pollination services: are there general patterns?. Ecology Letters, 2008, 11, 499-515.	3.0	983
8	SCALE-DEPENDENT EFFECTS OF LANDSCAPE CONTEXT ON THREE POLLINATOR GUILDS. Ecology, 2002, 83, 1421-1432.	1.5	928
9	A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters, 2013, 16, 584-599.	3.0	875
10	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	3.0	681
11	Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nature Communications, 2015, 6, 7414.	5.8	656
12	Habitat fragmentation causes immediate and timeâ€delayed biodiversity loss at different trophic levels. Ecology Letters, 2010, 13, 597-605.	3.0	620
13	Fruit set of highland coffee increases with the diversity of pollinating bees. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 955-961.	1.2	618
14	Mass flowering crops enhance pollinator densities at a landscape scale. Ecology Letters, 2003, 6, 961-965.	3.0	569
15	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	2.4	562
16	Functional group diversity of bee pollinators increases crop yield. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2283-2291.	1.2	534
17	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	13.7	526
18	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	4.7	524

#	Article	IF	CITATIONS
19	Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142620.	1.2	467
20	Effects of landscape context on herbivory and parasitism at different spatial scales. Oikos, 2003, 101, 18-25.	1.2	404
21	Landscape simplification filters species traits and drives biotic homogenization. Nature Communications, 2015, 6, 8568.	5.8	399
22	Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4973-4978.	3.3	396
23	BIODIVERSITY INDICATOR GROUPS OF TROPICAL LAND-USE SYSTEMS: COMPARING PLANTS, BIRDS, AND INSECTS., 2004, 14, 1321-1333.		381
24	Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. Journal of Applied Ecology, 2006, 44, 41-49.	1.9	381
25	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	3.0	364
26	Characteristics of insect populations on habitat fragments: A mini review. Ecological Research, 2002, 17, 229-239.	0.7	363
27	Combining high biodiversity with high yields in tropical agroforests. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8311-8316.	3.3	339
28	Honeybee foraging in differentially structured landscapes. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 569-575.	1.2	330
29	Pollinator diversity and crop pollination services are at risk. Trends in Ecology and Evolution, 2005, 20, 651-652.	4.2	327
30	Bioindication using trapâ€nesting bees and wasps and their natural enemies: community structure and interactions. Journal of Applied Ecology, 1998, 35, 708-719.	1.9	326
31	Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.	4.2	320
32	Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 2019, 568, 88-92.	13.7	313
33	Importance of Habitat Area and Landscape Context for Species Richness of Bees and Wasps in Fragmented Orchard Meadows. Conservation Biology, 2003, 17, 1036-1044.	2.4	280
34	Effects of Land-Use Intensity in Tropical Agroforestry Systems on Coffee Flower-Visiting and Trap-Nesting Bees and Wasps. Conservation Biology, 2002, 16, 1003-1014.	2.4	268
35	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	4.2	259
36	How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?. Journal of Biogeography, 2003, 30, 889-900.	1.4	257

#	Article	IF	CITATIONS
37	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	3.3	243
38	Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5534-5539.	3.3	241
39	How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids?. Journal of Animal Ecology, 2010, 79, 491-500.	1.3	231
40	Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nature Communications, 2016, 7, 13736.	5.8	229
41	Agricultural landscapes with organic crops support higher pollinator diversity. Oikos, 2008, 117, 354-361.	1.2	223
42	Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2075-2082.	1.2	217
43	Local and landscapeâ€level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology, 2015, 52, 1165-1175.	1.9	208
44	Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia, 2006, 149, 289-300.	0.9	205
45	Effects of patch size and density on flower visitation and seed set of wild plants: a panâ€European approach. Journal of Ecology, 2010, 98, 188-196.	1.9	199
46	Expansion of mass-flowering crops leads to transient pollinator dilution and reduced wild plant pollination. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3444-3451.	1.2	199
47	Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4447-4456.	1.2	198
48	Massâ€flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecology Letters, 2016, 19, 1228-1236.	3.0	195
49	DO RESOURCES OR NATURAL ENEMIES DRIVE BEE POPULATION DYNAMICS IN FRAGMENTED HABITATS. Ecology, 2008, 89, 1375-1387.	1.5	190
50	Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodiversity and Conservation, 2004, 13, 1427-1439.	1.2	189
51	Pollination, seed set and seed predation on a landscape scale. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1685-1690.	1.2	187
52	The database of the <scp>PREDICTS</scp> (Projecting Responses of Ecological Diversity In Changing) Tj ETQq0	0 0 rgBT /	Overlock 10 T
53	Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2014, 2, e328.	0.9	183
54	Mass-flowering crops enhance wild bee abundance. Oecologia, 2013, 172, 477-484.	0.9	179

#	Article	IF	CITATIONS
55	Invasive plant integration into native plant–pollinator networks across Europe. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3887-3893.	1.2	175
56	Agricultural Policies Exacerbate Honeybee Pollination Service Supply-Demand Mismatches Across Europe. PLoS ONE, 2014, 9, e82996.	1.1	171
57	Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. Journal of Applied Ecology, 2010, 47, 799-809.	1.9	167
58	Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach. BMC Ecology, 2015, 15, 20.	3.0	167
59	Pollination efficiency of wild bees and hoverflies provided to oilseed rape. Agricultural and Forest Entomology, 2012, 14, 81-87.	0.7	166
60	Insect communities and biotic interactions on fragmented calcareous grasslands—a mini review. Biological Conservation, 2002, 104, 275-284.	1.9	162
61	Alarm: Assessing Large-scale environmental Risks for biodiversity with tested Methods. Gaia, 2005, 14, 69-72.	0.3	160
62	ADVANCES IN POLLINATION ECOLOGY FROM TROPICAL PLANTATION CROPS. Ecology, 2008, 89, 935-943.	1.5	152
63	Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia, 2003, 135, 601-605.	0.9	151
64	Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. Journal of Applied Ecology, 2007, 44, 804-812.	1.9	150
65	Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic and Applied Ecology, 2009, 10, 178-186.	1.2	149
66	Succession of bee communities on fallows. Ecography, 2001, 24, 83-93.	2.1	148
67	Bee pollination and fruit set of <i>Coffea arabica</i> and <i>C. canephora</i> (Rubiaceae). American Journal of Botany, 2003, 90, 153-157.	0.8	141
68	Landscape context affects trap-nesting bees, wasps, and their natural enemies. Ecological Entomology, 2002, 27, 631-637.	1.1	138
69	CONTRIBUTION OF SMALL HABITAT FRAGMENTS TO CONSERVATION OF INSECT COMMUNITIES OF GRASSLAND–CROPLAND LANDSCAPES*. , 2002, 12, 354-363.		138
70	EDITOR'S CHOICE: REVIEW: Trait matching of flower visitors and crops predicts fruit set better than trait diversity. Journal of Applied Ecology, 2015, 52, 1436-1444.	1.9	136
71	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	0.7	135
72	Landscape context and habitat type as drivers of bee diversity in European annual crops. Agriculture, Ecosystems and Environment, 2009, 133, 40-47.	2.5	134

#	Article	IF	Citations
73	Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry. Journal of Animal Ecology, 2006, 75, 315-323.	1.3	131
74	Landscapeâ€level crop diversity benefits biological pest control. Journal of Applied Ecology, 2018, 55, 2419-2428.	1.9	127
75	CAVEATS TO QUANTIFYING ECOSYSTEM SERVICES: FRUIT ABORTION BLURS BENEFITS FROM CROP POLLINATION. Ecological Applications, 2007, 17, 1841-1849.	1.8	126
76	Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Molecular Ecology, 2007, 16, 1167-1178.	2.0	126
77	The interplay of pollinator diversity, pollination services and landscape change. Journal of Applied Ecology, 2008, 45, 737-741.	1.9	121
78	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	1.8	117
79	Alpha and beta diversity of plants and animals along a tropical landâ€use gradient. Ecological Applications, 2009, 19, 2142-2156.	1.8	115
80	Scaleâ€dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecological Applications, 2016, 26, 448-462.	1.8	114
81	The Conservation of Native Honey Bees Is Crucial. Trends in Ecology and Evolution, 2019, 34, 789-798.	4.2	110
82	Local species immigration, extinction, and turnover of butterflies in relation to habitat area and habitat isolation. Oecologia, 2003, 137, 591-602.	0.9	107
83	Decreased Functional Diversity and Biological Pest Control in Conventional Compared to Organic Crop Fields. PLoS ONE, 2011, 6, e19502.	1.1	101
84	Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE, 2017, 12, e0183716.	1.1	101
85	Effects of decomposers and herbivores on plant performance and aboveground plant-insect interactions. Oikos, 2005, 108, 503-510.	1.2	100
86	Foraging trip duration of bumblebees in relation to landscape-wide resource availability. Ecological Entomology, 2006, 31, 389-394.	1.1	100
87	Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biological Conservation, 2014, 172, 56-64.	1.9	97
88	Season and landscape composition affect pollen foraging distances and habitat use of honey bees. Ecological Applications, 2016, 26, 1920-1929.	1.8	96
89	Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133148.	1.2	93
90	Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Scientific Reports, 2016, 6, 31153.	1.6	92

#	Article	IF	CITATIONS
91	Predator–prey ratios on cocoa along a land-use gradient in Indonesia. Biodiversity and Conservation, 2002, 11, 683-693.	1.2	90
92	Canopy vs. understory: Does tree diversity affect bee and wasp communities and their natural enemies across forest strata?. Forest Ecology and Management, 2009, 258, 609-615.	1.4	90
93	Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape Ecology, 2014, 29, 425-435.	1.9	90
94	Density of insectâ€pollinated grassland plants decreases with increasing surrounding landâ€use intensity. Ecology Letters, 2014, 17, 1168-1177.	3.0	87
95	Shade tree management affects fruit abortion, insect pests and pathogens of cacao. Agriculture, Ecosystems and Environment, 2007, 120, 201-205.	2.5	86
96	Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors. PLoS ONE, 2014, 9, e104439.	1.1	86
97	Title is missing!. Biodiversity and Conservation, 2003, 12, 1953-1968.	1.2	85
98	Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nature Ecology and Evolution, 2018, 2, 1408-1417.	3.4	83
99	Deadwood enrichment in European forests – Which tree species should be used to promote saproxylic beetle diversity?. Biological Conservation, 2016, 201, 92-102.	1.9	82
100	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	5.8	81
101	Combined effects of <i>Impatiens glandulifera</i> invasion and landscape structure on native plant pollination. Journal of Ecology, 2010, 98, 440-450.	1.9	80
102	The contribution of cacao agroforests to the conservation of lower canopy ant and beetle diversity in Indonesia. Biodiversity and Conservation, 2007, 16, 2429-2444.	1.2	79
103	Spatiotemporal changes of beetle communities across a tree diversity gradient. Diversity and Distributions, 2009, 15, 660-670.	1.9	79
104	Foraging trip duration and density of megachilid bees, eumenid wasps and pompilid wasps in tropical agroforestry systems. Journal of Animal Ecology, 2004, 73, 517-525.	1.3	78
105	Interannual landscape changes influence plant–herbivore–parasitoid interactions. Agriculture, Ecosystems and Environment, 2008, 125, 266-268.	2.5	78
106	The landscape matrix modifies the effect of habitat fragmentation in grassland butterflies. Landscape Ecology, 2012, 27, 121-131.	1.9	78
107	Grass strip corridors in agricultural landscapes enhance nestâ€site colonization by solitary wasps. Ecological Applications, 2009, 19, 123-132.	1.8	77
108	Understanding extinction debts: spatio–temporal scales, mechanisms and a roadmap for future research. Ecography, 2019, 42, 1973-1990.	2.1	77

#	Article	IF	Citations
109	Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landscape Ecology, 2013, 28, 107-120.	1.9	75
110	Habitat specialization, body size, and family identity explain lepidopteran density-area relationships in a cross-continental comparison. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8368-8373.	3.3	74
111	Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany's largest connected deciduous forest. Oecologia, 2009, 160, 279-288.	0.9	74
112	Habitat area but not habitat age determines wild bee richness in limestone quarries. Journal of Applied Ecology, 2009, 46, 194-202.	1.9	74
113	Annual dynamics of wild bee densities: attractiveness and productivity effects of oilseed rape. Ecology, 2015, 96, 1351-1360.	1.5	74
114	Bird diversity and seed dispersal along a human land-use gradient: high seed removal in structurally simple farmland. Oecologia, 2010, 162, 965-976.	0.9	73
115	Temperature versus resource constraints: which factors determine bee diversity on <scp>M</scp> ount <scp>K</scp> ilimanjaro, <scp>T</scp> anzania?. Global Ecology and Biogeography, 2015, 24, 642-652.	2.7	73
116	Landscape occupancy and local population size depends on host plant distribution in the butterfly Cupido minimus. Biological Conservation, 2004, 120, 355-361.	1.9	70
117	Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 2017, 20, 1427-1436.	3.0	70
118	Relative importance of resource quantity, isolation and habitat quality for landscape distribution of a monophagous butterfly. Ecography, 2005, 28, 465-474.	2.1	67
119	The invasive Yellow Crazy Ant and the decline of forest ant diversity in Indonesian cacao agroforests. Biological Invasions, 2008, 10, 1399-1409.	1.2	67
120	Seed set of male-sterile and male-fertile oilseed rape (Brassica napus) in relation to pollinator density. Apidologie, 2003, 34, 227-235.	0.9	64
121	Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project. Journal of Apicultural Research, 2011, 50, 152-164.	0.7	64
122	Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 2018, 9, 3177.	5.8	63
123	Adaptation of Circadian Neuronal Network to Photoperiod in High-Latitude European Drosophilids. Current Biology, 2017, 27, 833-839.	1.8	62
124	Relationship of insect biomass and richness with land use along a climate gradient. Nature Communications, 2021, 12, 5946.	5.8	61
125	A multitaxa assessment of the effectiveness of agri-environmental schemes for biodiversity management. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	60
126	Complementarity among natural enemies enhances pest suppression. Scientific Reports, 2017, 7, 8172.	1.6	58

#	Article	IF	Citations
127	Drivers, Diversity, and Functions of the Solitary-Bee Microbiota. Trends in Microbiology, 2019, 27, 1034-1044.	3.5	57
128	Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Molecular Ecology, 2004, 13, 311-320.	2.0	56
129	Biological pest control and yields depend on spatial and temporal crop cover dynamics. Journal of Applied Ecology, 2015, 52, 1283-1292.	1.9	56
130	Forest management and regional tree composition drive the host preference of saproxylic beetle communities. Journal of Applied Ecology, 2015, 52, 753-762.	1.9	56
131	Morphological traits are linked to the cold performance and distribution of bees along elevational gradients. Journal of Biogeography, 2016, 43, 2040-2049.	1.4	55
132	Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLoS ONE, 2018, 13, e0200438.	1.1	55
133	Securing the Conservation of Biodiversity across Administrative Levels and Spatial, Temporal, and Ecological Scales – Research Needs and Approaches of the <i>SCALES</i> Project. Gaia, 2010, 19, 187-193.	0.3	54
134	Honey bee risk assessment: new approaches for <i>in vitro</i> larvae rearing and data analyses. Methods in Ecology and Evolution, 2011, 2, 509-517.	2.2	54
135	The Contribution of Tropical Secondary Forest Fragments to the Conservation of Fruit-feeding Butterflies: Effects of Isolation and Age. Biodiversity and Conservation, 2005, 14, 3577-3592.	1.2	53
136	Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity. Biodiversity and Conservation, 2010, 19, 2189-2200.	1.2	53
137	Integrating intraspecific variation in community ecology unifies theories on body size shifts along climatic gradients. Functional Ecology, 2017, 31, 768-777.	1.7	51
138	Interactive effects of elevation, species richness and extreme climatic events on plant–pollinator networks. Global Change Biology, 2015, 21, 4086-4097.	4.2	49
139	Tree diversity drives abundance and spatiotemporal βâ€diversity of true bugs (Heteroptera). Ecological Entomology, 2009, 34, 772-782.	1.1	48
140	Agriâ€environmental schemes promote groundâ€dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distanceâ€decay functions. Journal of Applied Ecology, 2019, 56, 10-20.	1.9	48
141	Size, age and surrounding semi-natural habitats modulate the effectiveness of flower-rich agri-environment schemes to promote pollinator visitation in crop fields. Agriculture, Ecosystems and Environment, 2019, 284, 106590.	2.5	46
142	Can Joint Carbon and Biodiversity Management in Tropical Agroforestry Landscapes Be Optimized?. PLoS ONE, 2012, 7, e47192.	1.1	44
143	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	1.2	43
144	Towards the development of general rules describing landscape heterogeneity–multifunctionality relationships. Journal of Applied Ecology, 2019, 56, 168-179.	1.9	42

#	Article	IF	Citations
145	Costâ€effectiveness of plant and animal biodiversity indicators in tropical forest and agroforest habitats. Journal of Applied Ecology, 2011, 48, 330-339.	1.9	41
146	Spillover from adjacent crop and forest habitats shapes carabid beetle assemblages in fragmented semi-natural grasslands. Oecologia, 2016, 182, 1141-1150.	0.9	41
147	Managing trapâ€nesting bees as crop pollinators: Spatiotemporal effects of floral resources and antagonists. Journal of Applied Ecology, 2018, 55, 195-204.	1.9	41
148	Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecology and Evolution, 2020, 10, 2182-2195.	0.8	41
149	Floral trait expression and plant fitness in response to below- and aboveground plant–animal interactions. Perspectives in Plant Ecology, Evolution and Systematics, 2005, 7, 77-83.	1.1	40
150	Testing Pollen of Single and Stacked Insect-Resistant Bt-Maize on In vitro Reared Honey Bee Larvae. PLoS ONE, 2011, 6, e28174.	1.1	40
151	Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170198.	1.2	40
152	Contrasting Effects of Extreme Drought and Snowmelt Patterns on Mountain Plants along an Elevation Gradient. Frontiers in Plant Science, 2017, 8, 1478.	1.7	40
153	Bacterial community structure and succession in nests of two megachilid bee genera. FEMS Microbiology Ecology, 2019, 95, .	1.3	40
154	Effect of Stacked Insecticidal Cry Proteins from Maize Pollen on Nurse Bees (Apis mellifera carnica) and Their Gut Bacteria. PLoS ONE, 2013, 8, e59589.	1.1	39
155	Interactive effects of habitat fragmentation and microclimate on trap-nesting Hymenoptera and their trophic interactions in small secondary rainforest remnants. Biodiversity and Conservation, 2015, 24, 563-577.	1.2	39
156	Diverse Microbiota Identified in Whole Intact Nest Chambers of the Red Mason Bee Osmia bicornis (Linnaeus 1758). PLoS ONE, 2013, 8, e78296.	1.1	39
157	Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient. Journal of Experimental Botany, 2013, 64, 241-251.	2.4	38
158	Maize pollen foraging by honey bees in relation to crop area and landscape context. Basic and Applied Ecology, 2014, 15, 677-684.	1.2	38
159	Honey bee waggle dance communication increases diversity of pollen diets in intensively managed agricultural landscapes. Molecular Ecology, 2019, 28, 3602-3611.	2.0	38
160	Influence of habitat complexity and landscape configuration on pollination and seed-dispersal interactions of wild cherry trees. Oecologia, 2012, 168, 425-437.	0.9	37
161	Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia, 2014, 175, 613-623.	0.9	36
162	Pest control of aphids depends on landscape complexity and natural enemy interactions. Peerl, 2015, 3, e1095.	0.9	36

#	Article	IF	Citations
163	Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecology and Evolution, 2019, 9, 10788-10800.	0.8	36
164	Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology and Evolution, 2021, 5, 1582-1593.	3.4	35
165	Ecological network complexity scales with area. Nature Ecology and Evolution, 2022, 6, 307-314.	3.4	35
166	The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. Peerl, 2018, 6, e4801.	0.9	31
167	Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology, 2019, 100, e02569.	1.5	31
168	Contrasting effects of habitat area and connectivity on evenness of pollinator communities. Ecography, 2014, 37, 544-551.	2.1	30
169	Pest control potential of adjacent agriâ€environment schemes varies with crop type and is shaped by landscape context and withinâ€field position. Journal of Applied Ecology, 2020, 57, 1482-1493.	1.9	30
170	Predation rates on semi-natural grasslands depend on adjacent habitat type. Basic and Applied Ecology, 2013, 14, 614-621.	1.2	29
171	Plant–pollinator networks in semiâ€natural grasslands are resistant to the loss of pollinators during blooming of massâ€flowering crops. Ecography, 2018, 41, 62-74.	2.1	29
172	Impact of land use intensification and local features on plants and pollinators in Sub-Saharan smallholder farms. Agriculture, Ecosystems and Environment, 2021, 319, 107560.	2.5	29
173	Contribution of Small Habitat Fragments to Conservation of Insect Communities of Grassland-Cropland Landscapes., 2002, 12, 354.		28
174	Effects of multiple Bt proteins and GNA lectin on in vitro-reared honey bee larvae. Apidologie, 2012, 43, 549-560.	0.9	28
175	Pollinator community responses to the spatial population structure of wild plants: A pan-European approach. Basic and Applied Ecology, 2012, 13, 489-499.	1.2	28
176	Seasonal timing in honey bee colonies: phenology shifts affect honey stores and varroa infestation levels. Oecologia, 2019, 189, 1121-1131.	0.9	27
177	Climate and food resources shape species richness and trophic interactions of cavityâ€nesting Hymenoptera. Journal of Biogeography, 2020, 47, 854-865.	1.4	26
178	Temperature drives variation in flying insect biomass across a German malaise trap network. Insect Conservation and Diversity, 2022, 15, 168-180.	1.4	26
179	Interactive effects of climate and land use on pollinator diversity differ among taxa and scales. Science Advances, 2022, 8, eabm9359.	4.7	26
180	Ecology: Honey Bee Foraging in Human-Modified Landscapes. Current Biology, 2014, 24, R524-R526.	1.8	25

#	Article	IF	Citations
181	Limitation of complementary resources affects colony growth, foraging behavior, and reproduction in bumble bees. Ecology, 2020, 101, e02946.	1.5	25
182	Adaptive evolution of honeybee dance dialects. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200190.	1.2	25
183	Standard methods for pollen research. Journal of Apicultural Research, 2021, 60, 1-109.	0.7	25
184	Variation in nutrient use in ant assemblages along an extensive elevational gradient on Mt Kilimanjaro. Journal of Biogeography, 2014, 41, 2245-2255.	1.4	24
185	Crop pollination services at the landscape scale. Current Opinion in Insect Science, 2017, 21, 91-97.	2.2	24
186	CRISPR/Cas 9-Mediated Mutations as a New Tool for Studying Taste in Honeybees. Chemical Senses, 2020, 45, 655-666.	1.1	24
187	Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa. Ecology and Evolution, 2018, 8, 6827-6838.	0.8	23
188	Susceptibility of Red Mason Bee Larvae to Bacterial Threats Due to Microbiome Exchange with Imported Pollen Provisions. Insects, 2020, 11, 373.	1.0	23
189	Belowground effects of organic and conventional farming on aboveground plant–herbivore and plant–pathogen interactions. Agriculture, Ecosystems and Environment, 2006, 113, 162-167.	2.5	22
190	Effects of Logging and Oil Palm Expansion on Stream Frog Communities on Borneo, Southeast Asia. Biotropica, 2015, 47, 636-643.	0.8	21
191	A new device for monitoring individual activity rhythms of honey bees reveals critical effects of the social environment on behavior. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2016, 202, 555-565.	0.7	21
192	Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success. Environmental Pollution, 2021, 272, 115953.	3.7	21
193	Comparative landscape genetics of two river frog species occurring at different elevations on <scp>M</scp> ount <scp>K</scp> ilimanjaro. Molecular Ecology, 2014, 23, 4989-5002.	2.0	20
194	Combined effects of waggle dance communication and landscape heterogeneity on nectar and pollen uptake in honey bee colonies. PeerJ, 2017, 5, e3441.	0.9	20
195	The impact of habitat fragmentation on trophic interactions of the monophagous butterfly Polyommatus coridon. Journal of Insect Conservation, 2011, 15, 707-714.	0.8	19
196	Effects of Land Use on Butterfly Communities at the Rain Forest Margin: A Case Study from Central Sulawesi., 2004,, 281-297.		19
197	Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food. PeerJ, 2017, 5, e3858.	0.9	19
198	High nutritional status promotes vitality of honey bees and mitigates negative effects of pesticides. Science of the Total Environment, 2022, 806, 151280.	3.9	19

#	Article	IF	CITATIONS
199	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	1.5	19
200	Combined effects of climate and management on plant diversity and pollination type in alpine grasslands. Diversity and Distributions, 2013, 19, 386-395.	1.9	18
201	From rainforest to oil palm plantations: Shifts in predator population and prey communities, but resistant interactions. Global Ecology and Conservation, 2014, 2, 385-394.	1.0	18
202	Amphibian diversity on the roof of <scp>A</scp> frica: unveiling the effects of habitat degradation, altitude and biogeography. Diversity and Distributions, 2014, 20, 297-308.	1.9	18
203	Contribution of European forests to safeguard wild honeybee populations. Conservation Letters, 2020, 13, e12693.	2.8	18
204	Climate rather than dung resources predict dung beetle abundance and diversity along elevational and land use gradients on Mt. Kilimanjaro. Journal of Biogeography, 2020, 47, 371-381.	1.4	18
205	Spatiotemporal Fusion Modelling Using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria. Remote Sensing, 2022, 14, 677.	1.8	18
206	Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Global Food Security, 2020, 26, 100394.	4.0	17
207	Primary productivity and habitat protection predict elevational species richness and community biomass of large mammals on Mt. Kilimanjaro. Journal of Animal Ecology, 2019, 88, 1860-1872.	1.3	16
208	Do improved pollination services outweigh farm-economic disadvantages of working in small-structured agricultural landscapes? – Development and application of a bio-economic model. Ecological Economics, 2020, 169, 106535.	2.9	16
209	Combined Effects of Extreme Climatic Events and Elevation on Nutritional Quality and Herbivory of Alpine Plants. PLoS ONE, 2014, 9, e93881.	1.1	16
210	Elevation and experimental snowmelt manipulation affect emergence phenology and abundance of soilâ€hibernating arthropods. Ecological Entomology, 2014, 39, 412-418.	1.1	15
211	Fragmentation genetics of the grassland butterfly Polyommatus coridon: Stable genetic diversity or extinction debt?. Conservation Genetics, 2015, 16, 549-558.	0.8	15
212	Vertical diversity patterns and biotic interactions of trap-nesting bees along a fragmentation gradient of small secondary rainforest remnants. Apidologie, 2016, 47, 527-538.	0.9	15
213	Interactive effects of landscape-wide intensity of farming practices and landscape complexity on wild bee diversity. Landscape Ecology, 2017, 32, 1631-1642.	1.9	15
214	Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems. Journal of Applied Ecology, 2021, 58, 507-517.	1.9	15
215	Cryptic species and hidden ecological interactions of halictine bees along an elevational gradient. Ecology and Evolution, 2021, 11, 7700-7712.	0.8	15
216	Disentangling effects of climate and land use on biodiversity and ecosystem services—A multiâ€scale experimental design. Methods in Ecology and Evolution, 2022, 13, 514-527.	2.2	15

#	Article	IF	Citations
217	Conversion of savannah habitats to small-scale agriculture affects grasshopper communities at Mt. Kilimanjaro, Tanzania. Journal of Insect Conservation, 2015, 19, 509-518.	0.8	14
218	Plant-mediated effects of ozone on herbivores depend on exposure duration and temperature. Scientific Reports, 2019, 9, 19891.	1.6	14
219	Relationships between abiotic environment, plant functional traits, and animal body size at Mount Kilimanjaro, Tanzania. PLoS ONE, 2017, 12, e0174157.	1.1	12
220	Leaf traits mediate changes in invertebrate herbivory along broad environmental gradients on Mt. Kilimanjaro, Tanzania. Journal of Animal Ecology, 2019, 88, 1777-1788.	1.3	12
221	Semi-natural habitats promote winter survival of wild-living honeybees in an agricultural landscape. Biological Conservation, 2022, 266, 109450.	1.9	12
222	Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts. Ecology, 2022, 103, e3712.	1.5	12
223	Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies. Microbial Ecology, 2016, 71, 938-953.	1.4	11
224	Effects of grazing intensity, habitat area and connectivity on snail-shell nesting bees. Biological Conservation, 2020, 242, 108406.	1.9	11
225	Evaluating predictive performance of statistical models explaining wild bee abundance in a massâ€flowering crop. Ecography, 2021, 44, 525-536.	2.1	11
226	Insect diversity responses to forest conversion and agroforestry management., 2007,, 277-294.		11
227	An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals. Plants People Planet, 2022, 4, 110-121.	1.6	11
228	Transforming Tropical Agroforestry towards High Socio-Ecological Standards. Trends in Ecology and Evolution, 2020, 35, 1049-1052.	4.2	10
229	Pollinator supplementation mitigates pollination deficits in smallholder avocado (Persea americana) Tj $$ ETQq 11 0.	.784314 r 1.2	gBT/Overlo
230	Plant-mediated interactions between below- and aboveground processes: decomposition, herbivory, parasitism, and pollination., 2007,, 147-163.		9
231	Temporal and spatial foraging patterns of three Asian honey bee species in Bangalore, India. Apidologie, 2021, 52, 503-523.	0.9	9
232	Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant. Ecology and Evolution, 2021, 11, 7834-7849.	0.8	9
233	Cacao flower visitation: Low pollen deposition, low fruit set and dominance of herbivores. Ecological Solutions and Evidence, 2022, 3, .	0.8	9
234	Floral preferences of mountain bumble bees are constrained by functional traits but flexible through elevation and season. Oikos, 2022, 2022, .	1.2	9

#	Article	IF	CITATIONS
235	Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms. PeerJ, 2021, 9, e10732.	0.9	8
236	Arthropod overwintering in agri-environmental scheme flowering fields differs among pollinators and natural enemies. Agriculture, Ecosystems and Environment, 2022, 330, 107890.	2.5	8
237	Changes in the life history traits of the European Map butterfly, Araschnia levana (Lepidoptera:) Tj ETQq1 1 0.784	·314 rgBT	/Overlock 10
238	Trait-dependent responses of birds and bats to season and dry forest distance in tropical agroforestry. Agriculture, Ecosystems and Environment, 2022, 325, 107751.	2.5	7
239	Floral turnover and climate drive seasonal bee diversity along a tropical elevation gradient. Ecosphere, 2022, 13, .	1.0	7
240	Effects of management and structural connectivity on the plant communities of organic vegetable field margins in South Korea. Ecological Research, 2013, 28, 991-1002.	0.7	6
241	Butterfly diversity and historical land cover change along an altitudinal gradient. Journal of Insect Conservation, 2013, 17, 1039-1046.	0.8	6
242	Testing dose-dependent effects of stacked Bt maize pollen on in vitro-reared honey bee larvae. Apidologie, 2016, 47, 216-226.	0.9	6
243	A synopsis of the Bee occurrence data of northern Tanzania. Biodiversity Data Journal, 2021, 9, e68190.	0.4	6
244	Positive effects of low grazing intensity on East African bee assemblages mediated by increases in floral resources. Biological Conservation, 2022, 267, 109490.	1.9	6
245	Spatiotemporal density patterns of the pest predator Rhynchium haemorrhoidale (F.) along a land-use gradient in cacao agroforestry systems. Agroforestry Systems, 2009, 76, 163-171.	0.9	5
246	Co-benefits of soil carbon protection for invertebrate conservation. Biological Conservation, 2020, 252, 108859.	1.9	5
247	Nature Conservation $\hat{a} \in \hat{a}$ a new dimension in Open Access publishing bridging science and application. Nature Conservation, 0, 1, 1-10.	0.0	5
248	Flower fields and pesticide use interactively shape pollen beetle infestation and parasitism in oilseed rape fields. Journal of Applied Ecology, 2022, 59, 263.	1.9	5
249	Plant age at the time of ozone exposure affects flowering patterns, biotic interactions and reproduction of wild mustard. Scientific Reports, 2021, 11, 23448.	1.6	5
250	Assessing local perceptions of deforestation, forest restoration, and the role of agroecology for agroecosystem restoration in northern Malawi. Land Degradation and Development, 0, , .	1.8	5
251	Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient. Global Change Biology, 2022, 28, 4027-4040.	4.2	5
252	Diverse Effects of Climate, Land Use, and Insects on Dung and Carrion Decomposition. Ecosystems, 2023, 26, 397-411.	1.6	5

#	Article	IF	Citations
253	Transdisciplinary agroecological research on biodiversity and ecosystem services for sustainable and climate resilient farming systems in Malawi. Advances in Ecological Research, 2022, , .	1.4	4
254	Plant traits mediate the effects of climate on phytophagous beetle diversity on Mt. Kilimanjaro. Ecology, 2021, 102, e03521.	1.5	3
255	Hover flies: An incomplete indicator of biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	3
256	In Vitro Rearing Changes Social Task Performance and Physiology in Honeybees. Insects, 2022, 13, 4.	1.0	3
257	Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on plant functional groups. Oecologia, 2022, 199, 407-417.	0.9	3
258	Nectar robbing rather than pollinator availability constrains reproduction of a beeâ€flowered plant at high elevations. Ecosphere, 2022, 13, .	1.0	3
259	Increasing the phylogenetic coverage for understanding broad-scale diversity gradients. Oecologia, 2020, 192, 629-639.	0.9	2
260	Landscape diversity and local temperature, but not climate, affect arthropod predation among habitat types. PLoS ONE, 2022, 17, e0264881.	1.1	2
261	SCALE-DEPENDENT EFFECTS OF LANDSCAPE CONTEXT ON THREE POLLINATOR GUILDS. , 2002, 83, 1421.		1
262	Spatiotemporal density patterns of the pest predator Rhynchium haemorrhoidale (F.) along a land-use gradient in cacao agroforestry systems. Advances in Agroforestry, 2008, , 163-171.	0.8	0
263	Grassland Habitats. , 2009, , 424-428.		O