Yulong Jin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7831590/yulong-jin-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24 370 10 19 g-index

28 485 6.9 3.69 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
24	Recent Progress of Exosome Isolation and Peptide Recognition-Guided Strategies for Exosome Research <i>Frontiers in Chemistry</i> , 2022 , 10, 844124	5	3
23	Metal-Organic Framework-Based Nanoheater with Photo-Triggered Cascade Effects for On-Demand Suppression of Cellular Thermoresistance and Synergistic Cancer Therapy <i>Advanced Healthcare Materials</i> , 2022 , e2200004	10.1	
22	Selective recognition of a cyclic peptide hormone in human plasma by hydrazone bond-oriented surface imprinted nanoparticles. <i>Analytica Chimica Acta</i> , 2021 , 1154, 338301	6.6	7
21	Activity-Based Probe for Ratiometric Fluorescence Imaging of Caspase-3 in Living Cells. <i>Analytical Chemistry</i> , 2021 , 93, 2045-2052	7.8	7
20	Engineering Peptide-Functionalized Biomimetic Nanointerfaces for Synergetic Capture of Circulating Tumor Cells in an EpCAM-Independent Manner. <i>Analytical Chemistry</i> , 2021 , 93, 9778-9787	7.8	6
19	Pyridinium-Substituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. <i>Angewandte Chemie</i> , 2020 , 132, 10128-10137	3.6	3
18	Pyridinium-Substituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10042-10051	16.4	27
17	Ratiometric detection of amyloid-laggregation by a dual-emissive tris-heteroleptic ruthenium complex. <i>Chemical Communications</i> , 2020 , 56, 2087-2090	5.8	8
16	Biomimetic Sensing System for Tracing Pb Distribution in Living Cells Based on the Metal-Peptide Supramolecular Assembly. <i>ACS Applied Materials & English Supramolecular Assembly ACS Applied Materials & English Supramolecular Accordance & English Supramolecular & English & English Supramolecular & English & Englis</i>	9.5	18
15	Peptide-Guided System with Programmable Subcellular Translocation for Targeted Therapy and Bypassing Multidrug Resistance. <i>Analytical Chemistry</i> , 2019 , 91, 1880-1886	7.8	8
14	Bioinspired Peptide for Imaging Hg Distribution in Living Cells and Zebrafish Based on Coordination-Mediated Supramolecular Assembling. <i>Analytical Chemistry</i> , 2018 , 90, 9708-9715	7.8	22
13	Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 8490-8497	9.5	9
12	Surface-imprinted magnetic nanoparticles for the selective enrichment and fast separation of fluoroquinolones in human serum. <i>Journal of Separation Science</i> , 2017 , 40, 2269-2277	3.4	5
11	Dual-targeting peptide probe for sequence- and structure-sensitive sensing of serum albumin. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 657-662	11.8	9
10	Rapid, sensitive, and in-solution screening of peptide probes for targeted imaging of live cancer cells based on peptide recognition-induced emission. <i>Chemical Communications</i> , 2017 , 53, 11091-11094	5.8	15
9	Well-defined magnetic surface imprinted nanoparticles for selective enrichment of 2,4-dichlorophenoxyacetic acid in real samples. <i>Talanta</i> , 2017 , 174, 725-732	6.2	21
8	Rational design and functional evolution of targeted peptides for bioanalytical applications. <i>Science China Chemistry</i> , 2016 , 59, 1250-1257	7.9	5

LIST OF PUBLICATIONS

7	Self-Assembled Nanostructures Based on Activatable Red Fluorescent Dye for Site-Specific Protein Probing and Conformational Transition Detection. <i>Analytical Chemistry</i> , 2016 , 88, 6374-81	7.8	34	
6	Emissive nanoparticles from pyridinium-substituted tetraphenylethylene salts: imaging and selective cytotoxicity towards cancer cells and by varying counter anions. <i>Chemical Science</i> , 2016 , 7, 70)1 <i>3²7</i> 01	19 ⁵⁶	
5	A peptide-based pH-sensitive drug delivery system for targeted ablation of cancer cells. <i>Chemical Communications</i> , 2015 , 51, 14454-7	5.8	24	
4	Highly selective piezoelectric sensor for lead(II) based on the lead-catalyzed release of gold nanoparticles from a self-assembled nanosurface. <i>Mikrochimica Acta</i> , 2014 , 181, 1521-1527	5.8	7	
3	Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid. <i>Journal of Chromatography A</i> , 2014 , 1323, 11-7	4.5	55	
2	Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu(II) ions. <i>Analyst, The</i> , 2013 , 138, 5479-85	5	18	
1	Cyclic interconversion of methionine containing peptide between oxidized and reduced phases monitored by reversed-phase HPLC and ESI-MS/MS. <i>Talanta</i> , 2012 , 89, 531-6	6.2	3	