List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7831265/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Plasmocyte depletion in autoimmune diseases. , 2022, , 179-191.                                                                                                                                                                          |     | 0         |
| 2  | Further analyses of APRIL/APRIL-receptor/glycosaminoglycan interactions by biochemical assays linked to computational studies. Glycobiology, 2021, 31, 772-786.                                                                          | 2.5 | 9         |
| 3  | The number 13 of the family: a proliferation inducing ligand. Current Opinion in Immunology, 2021, 71, 132-137.                                                                                                                          | 5.5 | 6         |
| 4  | Case Report: In Situ Expression of a Proliferation-Inducing Ligand in Neuromyelitis Optica. Frontiers in Neurology, 2021, 12, 721877.                                                                                                    | 2.4 | 1         |
| 5  | Polarized Secretion of APRIL by the Tonsil Epithelium Upon Toll-Like Receptor Stimulation. Frontiers in<br>Immunology, 2021, 12, 715724.                                                                                                 | 4.8 | 2         |
| 6  | Advanced Molecular Dynamics Approaches to Model a Tertiary Complex APRIL/TACI with Long<br>Glycosaminoglycans. Biomolecules, 2021, 11, 1349.                                                                                             | 4.0 | 6         |
| 7  | The microenvironment of DLBCL is characterized by noncanonical macrophages recruited by tumor-derived CCL5. Blood Advances, 2021, 5, 4338-4351.                                                                                          | 5.2 | 9         |
| 8  | Inhibition of Chondroitin Sulfate Proteoglycans by APRIL. Methods in Molecular Biology, 2021, 2248,<br>43-61.                                                                                                                            | 0.9 | 2         |
| 9  | APRIL-producing eosinophils are involved in gastric MALT lymphomagenesis induced by Helicobacter sp<br>infection. Scientific Reports, 2020, 10, 14858.                                                                                   | 3.3 | 15        |
| 10 | APRIL Induces a Novel Subset of IgA+ Regulatory B Cells That Suppress Inflammation via Expression of IL-10 and PD-L1. Frontiers in Immunology, 2019, 10, 1368.                                                                           | 4.8 | 63        |
| 11 | A proliferationâ€inducing ligand–mediated antiâ€inflammatory response of astrocytes in multiple<br>sclerosis. Annals of Neurology, 2019, 85, 406-420.                                                                                    | 5.3 | 32        |
| 12 | Abundant a proliferation-inducing ligand (APRIL)-producing macrophages contribute to plasma cell<br>accumulation in immunoglobulin G4-related disease. Nephrology Dialysis Transplantation, 2019, 34,<br>960-969.                        | 0.7 | 17        |
| 13 | The role of APRIL - A proliferation inducing ligand - In autoimmune diseases and expectations from its targeting. Journal of Autoimmunity, 2018, 95, 179-190.                                                                            | 6.5 | 31        |
| 14 | Tumor-associated neutrophils correlate with poor prognosis in diffuse large B-cell lymphoma patients. Blood Cancer Journal, 2018, 8, 66.                                                                                                 | 6.2 | 24        |
| 15 | Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases.<br>International Reviews of Immunology, 2017, 36, 3-19.                                                                                 | 3.3 | 144       |
| 16 | Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by<br>Tonsillar Germinal Center B Cells in IgA Nephropathy. Journal of the American Society of Nephrology:<br>JASN, 2017, 28, 1227-1238. | 6.1 | 91        |
| 17 | CXCL-8/IL8 Produced by Diffuse Large B-cell Lymphomas Recruits Neutrophils Expressing a Proliferation-Inducing Ligand APRIL. Cancer Research, 2017, 77, 1097-1107.                                                                       | 0.9 | 59        |
| 18 | Progression of fibrosis in patients with chronic viral hepatitis is associated with<br><scp>lL</scp> â€17 <sup>+</sup> neutrophils. Liver International, 2016, 36, 1116-1124.                                                            | 3.9 | 30        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Revisiting IL-6 antagonism in multiple myeloma. Critical Reviews in Oncology/Hematology, 2016, 105, 1-4.                                                                                                                    | 4.4 | 53        |
| 20 | Pathogenic Role of a Proliferation-Inducing Ligand (APRIL) in Murine IgA Nephropathy. PLoS ONE, 2015, 10, e0137044.                                                                                                         | 2.5 | 24        |
| 21 | FP304ABERRANT APRIL EXPRESSION IN TONSILLAR GERMINAL CENTER B CELLS IN IGA NEPHROPATHY PATIENTS. Nephrology Dialysis Transplantation, 2015, 30, iii168-iii169.                                                              | 0.7 | 0         |
| 22 | No Evidence That Soluble TACI Induces Signalling via Membrane-Expressed BAFF and APRIL in Myeloid<br>Cells. PLoS ONE, 2013, 8, e61350.                                                                                      | 2.5 | 27        |
| 23 | Selective APRIL Blockade Delays Systemic Lupus Erythematosus in Mouse. PLoS ONE, 2012, 7, e31837.                                                                                                                           | 2.5 | 33        |
| 24 | A Novel Mouse Model for Multiple Myeloma (MOPC315.BM) That Allows Noninvasive Spatiotemporal<br>Detection of Osteolytic Disease. PLoS ONE, 2012, 7, e51892.                                                                 | 2.5 | 61        |
| 25 | Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow. Blood, 2011, 118, 1838-1844.                                                 | 1.4 | 85        |
| 26 | Evidence for a Repertoire of Functional Untolerized CD4 <sup>+</sup> T Cells Specific for<br>Melanomaâ€Associated Antigens. Scandinavian Journal of Immunology, 2011, 74, 80-86.                                            | 2.7 | 3         |
| 27 | Absence of up-regulation for a proliferation-inducing ligand in Sjogren's sialadenitis lesions.<br>Rheumatology, 2011, 50, 1211-1215.                                                                                       | 1.9 | 10        |
| 28 | CD56 <sup>bright</sup> NK cells after hematopoietic stem cell transplantation are activated mature<br>NK cells that expand in patients with low numbers of T cells. European Journal of Immunology, 2010,<br>40, 3246-3254. | 2.9 | 31        |
| 29 | Buffy's, B cells, and membrane BAFF. Arthritis and Rheumatism, 2010, 62, 1557-1558.                                                                                                                                         | 6.7 | 1         |
| 30 | Comment on "Cutting Edge: FcR-Like 6 Is an MHC Class II Receptor― Journal of Immunology, 2010, 185,<br>4965.1-4965.                                                                                                         | 0.8 | 0         |
| 31 | Comment on "Dendritic Cells and Monocyte/Macrophages That Create the IL-6/APRIL-Rich Lymph Node<br>Microenvironment Where Plasmablasts Mature†FIGURE 1 Journal of Immunology, 2009, 182, 5159-5159.                         | 0.8 | 1         |
| 32 | Tumors that look for their springtime in APRIL. Critical Reviews in Oncology/Hematology, 2009, 72, 91-97.                                                                                                                   | 4.4 | 26        |
| 33 | Lymph node tumor metastases: more susceptible than primary tumors to CD8+ T-cell immune destruction. Trends in Immunology, 2009, 30, 569-573.                                                                               | 6.8 | 11        |
| 34 | Synovial tissues concentrate secreted APRIL. Arthritis Research and Therapy, 2009, 11, R144.                                                                                                                                | 3.5 | 29        |
| 35 | Reconstitution of the immune system after hematopoietic stem cell transplantation in humans.<br>Seminars in Immunopathology, 2008, 30, 425-437.                                                                             | 6.1 | 210       |
| 36 | Role of the tumor necrosis factor ligand APRIL in Hodgkin's lymphoma: a retrospective study including 107 cases. Experimental Hematology, 2008, 36, 533-534.                                                                | 0.4 | 5         |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Role of the tumour necrosis family ligand APRIL in solid tumour development: Retrospective studies in bladder, ovarian and head and neck carcinomas. European Journal of Cancer, 2008, 44, 2097-2100. | 2.8 | 22        |
| 38 | Direct Presentation of a Melanocyte-Associated Antigen in Peripheral Lymph Nodes Induces Cytotoxic<br>CD8+ T Cells. Cancer Research, 2008, 68, 8410-8418.                                             | 0.9 | 12        |
| 39 | APRIL is critical for plasmablast survival in the bone marrow and poorly expressed by early-life bone marrow stromal cells. Blood, 2008, 111, 2755-2764.                                              | 1.4 | 311       |
| 40 | Heparan sulfate proteoglycans, Fc receptors, and DC suppression. Blood, 2008, 112, 915-916.                                                                                                           | 1.4 | 3         |
| 41 | APRIL secreted by neutrophils binds to heparan sulfate proteoglycans to create plasma cell niches in human mucosa. Journal of Clinical Investigation, 2008, 118, 2887-95.                             | 8.2 | 175       |
| 42 | Extralymphatic Tumors Prepare Draining Lymph Nodes to Invasion via a T-Cell Cross-Tolerance Process.<br>Cancer Research, 2007, 67, 5009-5016.                                                         | 0.9 | 39        |
| 43 | Neutrophil-derived APRIL concentrated in tumor lesions by proteoglycans correlates with human<br>B-cell lymphoma aggressiveness. Blood, 2007, 109, 331-338.                                           | 1.4 | 138       |
| 44 | Melanoma-infiltrating dendritic cells induce protective antitumor responses mediated by T cells.<br>Melanoma Research, 2007, 17, 169-176.                                                             | 1.2 | 21        |
| 45 | HLA and KIR polymorphisms affect NK-cell anti-tumor activity. Trends in Immunology, 2007, 28, 437-441.                                                                                                | 6.8 | 32        |
| 46 | Paracrine promotion of tumor development by the TNF ligand APRIL in Hodgkin's Disease. Leukemia, 2007, 21, 1324-1327.                                                                                 | 7.2 | 32        |
| 47 | T cell tolerance to the skin: a central role for central tolerance. Seminars in Immunopathology, 2007, 29, 59-64.                                                                                     | 6.1 | 0         |
| 48 | A CD40–CD95L fusion protein interferes with CD40L-induced prosurvival signaling and allows<br>membrane CD40L-restricted activation of CD95. Journal of Molecular Medicine, 2006, 84, 785-797.         | 3.9 | 17        |
| 49 | The source of APRIL up-regulation in human solid tumor lesions. Journal of Leukocyte Biology, 2006,<br>80, 697-704.                                                                                   | 3.3 | 68        |
| 50 | Tumor-Infiltrating Dendritic Cells Are Potent Antigen-Presenting Cells Able to Activate T Cells and Mediate Tumor Rejection. Journal of Immunology, 2006, 176, 61-67.                                 | 0.8 | 84        |
| 51 | Impaired CD40L signaling is a cause of defective IL-12 and TNF-α production in SeÌzary syndrome:<br>circumvention by hexameric soluble CD40L. Blood, 2005, 105, 219-225.                              | 1.4 | 36        |
| 52 | Identification of proteoglycans as the APRIL-specific binding partners. Journal of Experimental Medicine, 2005, 201, 1375-1383.                                                                       | 8.5 | 323       |
| 53 | BAFF production by antigen-presenting cells provides T cell co-stimulation. International Immunology, 2004, 16, 467-475.                                                                              | 4.0 | 134       |
| 54 | Expression of inhibitory KIR is confined to CD8+ effector T?cells and limits their proliferative capacity. European Journal of Immunology, 2004, 34, 3413-3422.                                       | 2.9 | 39        |

| #  | Article                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Activating CD94:NKG2C and inhibitory CD94:NKG2A receptors are expressed by distinct subsets of committed CD8+ TCR ?? lymphocytes. European Journal of Immunology, 2004, 34, 3456-3464.                                                                                        | 2.9  | 58        |
| 56 | Selective Expression of FLIP in Malignant Melanocytic Skin Lesions. Journal of Investigative Dermatology, 2001, 117, 360-364.                                                                                                                                                 | 0.7  | 97        |
| 57 | KIR down-regulation on NK cells is associated with down-regulation of activating receptors and NK cell inactivation. European Journal of Immunology, 2001, 31, 1728-1735.                                                                                                     | 2.9  | 24        |
| 58 | T Cell Costimulation by the TNF Ligand BAFF. Journal of Immunology, 2001, 167, 6225-6231.                                                                                                                                                                                     | 0.8  | 198       |
| 59 | A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. European<br>Journal of Immunology, 2000, 30, 509-515.                                                                                                                                 | 2.9  | 89        |
| 60 | A subpopulation of CD8+ T cells specific for melanocyte differentiation antigens expresses killer<br>inhibitory receptors (KIR) in healthy donors: evidence for a role of KIR in the control of peripheral<br>tolerance. European Journal of Immunology, 2000, 30, 1665-1675. | 2.9  | 40        |
| 61 | KIR expression on self-reactive CD8+ T cells is controlled by T-cell receptor engagement. Nature, 2000, 403, 325-328.                                                                                                                                                         | 27.8 | 121       |
| 62 | A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. European<br>Journal of Immunology, 2000, 30, 509-515.                                                                                                                                 | 2.9  | 2         |
| 63 | Expression of Inhibitory Receptors for MHC Class I Molecules on T Cells. Critical Reviews in Immunology, 2000, 20, 6.                                                                                                                                                         | 0.5  | 2         |
| 64 | LAG-3 does not define a specific mode of natural killing in human. Immunology Letters, 1998, 61, 109-112.                                                                                                                                                                     | 2.5  | 73        |
| 65 | Characterization of the major histocompatibility complex class II binding site on LAG-3 protein.<br>Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 5744-5749.                                                                     | 7.1  | 224       |
| 66 | T cell major histocompatibility complex class II molecules down-regulate CD4+ T cell clone responses<br>following LAG-3 binding. European Journal of Immunology, 1996, 26, 1180-1186.                                                                                         | 2.9  | 115       |
| 67 | CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-lg fusion proteins. European Journal of Immunology, 1995, 25, 2718-2721.                                                                                | 2.9  | 308       |
| 68 | Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. European Journal of Immunology, 1994, 24, 3216-3221.                                                                               | 2.9  | 189       |
| 69 | Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens Journal of Experimental Medicine, 1992, 176, 3 <u>27-337.</u>                                                                                | 8.5  | 331       |