
Vanchiappan Aravindan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews, 2014, 114, 11619-11635.	47.7	632
2	Research Progress on Negative Electrodes for Practical Liâ€ion Batteries: Beyond Carbonaceous Anodes. Advanced Energy Materials, 2015, 5, 1402225.	19.5	415
3	LiMnPO4 – A next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3518.	10.3	383
4	Recent Advancements in Allâ€Vanadium Redox Flow Batteries. Advanced Materials Interfaces, 2016, 3, 1500309.	3.7	351
5	3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy and Environmental Science, 2014, 7, 728-735.	30.8	348
6	Lithiumâ€Ion Conducting Electrolyte Salts for Lithium Batteries. Chemistry - A European Journal, 2011, 17, 14326-14346.	3.3	341
7	Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy, 2013, 2, 1158-1163.	16.0	244
8	Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors. Physical Chemistry Chemical Physics, 2012, 14, 5808.	2.8	236
9	Developments and Perspectives in 3d Transitionâ€Metalâ€Based Electrocatalysts for Neutral and Nearâ€Neutral Water Electrolysis. Advanced Energy Materials, 2020, 10, 1902666.	19.5	226
10	Hierarchical NiMoS and NiFeS Nanosheets with Ultrahigh Energy Density for Flexible All Solid‣tate Supercapacitors. Advanced Functional Materials, 2018, 28, 1803287.	14.9	223
11	Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Scientific Reports, 2013, 3, 3002.	3.3	222
12	Flexible Solidâ€&tate Asymmetric Supercapacitors Based on Nitrogenâ€Doped Graphene Encapsulated Ternary Metalâ€Nitrides with Ultralong Cycle Life. Advanced Functional Materials, 2018, 28, 1804663.	14.9	212
13	Hybrid supercapacitor with nano-TiP2O7 as intercalation electrode. Journal of Power Sources, 2011, 196, 8850-8854.	7.8	204
14	High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability. Journal of Physical Chemistry C, 2012, 116, 18087-18092.	3.1	202
15	Burgeoning Prospects of Spent Lithiumâ€lon Batteries in Multifarious Applications. Advanced Energy Materials, 2018, 8, 1802303.	19.5	186
16	Electrospun TiO ₂ –Graphene Composite Nanofibers as a Highly Durable Insertion Anode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2012, 116, 14780-14788.	3.1	181
17	Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. Journal of Power Sources, 2013, 227, 284-290.	7.8	178
18	High power lithium-ion hybrid electrochemical capacitors using spinel LiCrTiO4 as insertion electrode. Journal of Materials Chemistry, 2012, 22, 16026.	6.7	167

#	Article	IF	CITATIONS
19	An Urgent Call to Spent LIB Recycling: Whys and Wherefores for Graphite Recovery. Advanced Energy Materials, 2020, 10, 2002238.	19.5	167
20	MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). Nanoscale, 2014, 6, 4387.	5.6	159
21	Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. Journal of Materials Chemistry A, 2013, 1, 6145.	10.3	154
22	Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. Journal of Power Sources, 2011, 196, 6465-6472.	7.8	152
23	All ternary metal selenide nanostructures for high energy flexible charge storage devices. Nano Energy, 2019, 65, 103999.	16.0	152
24	Unveiling TiNb ₂ O ₇ as an Insertion Anode for Lithium Ion Capacitors with High Energy and Power Density. ChemSusChem, 2014, 7, 1858-1863.	6.8	147
25	TiO2 polymorphs in â€~rocking-chair' Li-ion batteries. Materials Today, 2015, 18, 345-351.	14.2	143
26	High energy asymmetric supercapacitor with 1D@2D structured NiCo2O4@Co3O4 and jackfruit derived high surface area porous carbon. Journal of Power Sources, 2016, 306, 248-257.	7.8	140
27	Boosting the Energy Density of Flexible Solid-State Supercapacitors via Both Ternary NiV ₂ Se ₄ and NiFe ₂ Se ₄ Nanosheet Arrays. Chemistry of Materials, 2019, 31, 4490-4504.	6.7	138
28	Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy, 2013, 2, 890-896.	16.0	133
29	Two-Dimensional Mesoporous Cobalt Sulfide Nanosheets as a Superior Anode for a Li-Ion Battery and a Bifunctional Electrocatalyst for the Li–O ₂ System. Chemistry of Materials, 2015, 27, 5726-5735.	6.7	133
30	Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries. Chemical Communications, 2015, 51, 2225-2234.	4.1	131
31	Research progress in Na-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 7538-7548.	10.3	131
32	Construction of Highâ€Energyâ€Density Supercapacitors from Pineâ€Coneâ€Derived Highâ€Surfaceâ€Area Carbons. ChemSusChem, 2014, 7, 1435-1442.	6.8	126
33	Fabrication of High Energyâ€Density Hybrid Supercapacitors Using Electrospun V ₂ O ₅ Nanofibers with a Selfâ€Supported Carbon Nanotube Network. ChemPlusChem, 2012, 77, 570-575.	2.8	125
34	Exceptional Performance of TiNb ₂ O ₇ Anode in All One-Dimensional Architecture by Electrospinning. ACS Applied Materials & Interfaces, 2014, 6, 8660-8666.	8.0	124
35	Influence of carbon towards improved lithium storage properties of Li2MnSiO4 cathodes. Journal of Materials Chemistry, 2011, 21, 2470.	6.7	122
36	Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization. Journal of Power Sources, 2012, 202, 299-307.	7.8	122

#	Article	IF	CITATIONS
37	Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Liâ€lon Batteries. Advanced Energy Materials, 2017, 7, 1602607.	19.5	122
38	A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes. Journal of Alloys and Compounds, 2010, 504, 224-227.	5.5	119
39	Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors. Journal of Power Sources, 2010, 195, 3761-3764.	7.8	115
40	Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 6556.	6.7	114
41	Nanostructured spinel LiNi 0.5 Mn 1.5 O 4 as new insertion anode for advanced Li-ion capacitors with high power capability. Nano Energy, 2015, 12, 69-75.	16.0	114
42	Cu-doped P2-Na _{0.5} Ni _{0.33} Mn _{0.67} O ₂ encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. Journal of Materials Chemistry A, 2017, 5, 8408-8415.	10.3	109
43	Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy, 2013, 2, 720-725.	16.0	107
44	Recycling Strategies for Spent Li-Ion Battery Mixed Cathodes. ACS Energy Letters, 2018, 3, 2101-2103.	17.4	103
45	Fluorineâ€Doped Fe ₂ O ₃ as High Energy Density Electroactive Material for Hybrid Supercapacitor Applications. Chemistry - an Asian Journal, 2014, 9, 852-857.	3.3	99
46	Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. Journal of Power Sources, 2015, 274, 846-850.	7.8	97
47	Adipic acid assisted sol–gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties. Journal of Materials Chemistry, 2010, 20, 7340.	6.7	96
48	Nonaqueous Lithiumâ€lon Capacitors with High Energy Densities using Trigolâ€Reduced Graphene Oxide Nanosheets as Cathodeâ€Active Material. ChemSusChem, 2013, 6, 2240-2244.	6.8	96
49	TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. Journal of Power Sources, 2016, 327, 171-177.	7.8	93
50	Synthesis of porous LiMn2O4 hollow nanofibers by electrospinning with extraordinary lithium storage properties. Chemical Communications, 2013, 49, 6677.	4.1	90
51	Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chemical Engineering Journal, 2017, 316, 506-513.	12.7	90
52	Synthesis of TiO2 hollow nanofibers by co-axial electrospinning and its superior lithium storage capability in full-cell assembly with olivine phosphate. Nanoscale, 2013, 5, 5973.	5.6	87
53	Oligomer-salt derived 3D, heavily nitrogen doped, porous carbon for Li-ion hybrid electrochemical capacitors application. Carbon, 2014, 80, 462-471.	10.3	84
54	Template-free synthesis of carbon hollow spheres and reduced graphene oxide from spent lithium-ion batteries towards efficient gas storage. Journal of Materials Chemistry A, 2019, 7, 3244-3252.	10.3	83

#	Article	IF	CITATIONS
55	Electrochemical performance of cobalt free, Li1.2(Mn0.32Ni0.32Fe0.16)O2 cathodes for lithium batteries. Electrochimica Acta, 2012, 68, 246-253.	5.2	82
56	Biomassâ€Derived Electrode for Next Generation Lithiumâ€lon Capacitors. ChemSusChem, 2016, 9, 849-854.	6.8	82
57	Improved Elevated Temperature Performance of Al-Intercalated V ₂ O ₅ Electrospun Nanofibers for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012, 4, 3270-3277.	8.0	80
58	A chemically bonded NaTi ₂ (PO ₄) ₃ /rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 17506-17516.	10.3	80
59	High-Energy Density Asymmetric Supercapacitor Based on Electrospun Vanadium Pentoxide and Polyaniline Nanofibers in Aqueous Electrolyte. Journal of the Electrochemical Society, 2012, 159, A1481-A1488.	2.9	79
60	Unveiling two-dimensional TiS ₂ as an insertion host for the construction of high energy Li-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 9177-9181.	10.3	76
61	Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode. Electrochimica Acta, 2014, 130, 766-770.	5.2	74
62	Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets. Nano Energy, 2020, 69, 104432.	16.0	74
63	Building next-generation supercapacitors with battery type Ni(OH) ₂ . Journal of Materials Chemistry A, 2021, 9, 15542-15585.	10.3	74
64	From Waste Paper Basket to Solid State and Liâ€HEC Ultracapacitor Electrodes: A Value Added Journey for Shredded Office Paper. Small, 2014, 10, 4395-4402.	10.0	73
65	Carbon-coated Li 3 V 2 (PO 4) 3 as insertion type electrode for lithium-ion hybrid electrochemical capacitors: An evaluation of anode and cathodic performance. Journal of Power Sources, 2015, 281, 310-317.	7.8	73
66	Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. Journal of Alloys and Compounds, 2010, 497, 321-324.	5.5	71
67	Unveiling organic–inorganic hybrids as a cathode material for high performance lithium-ion capacitors. Journal of Materials Chemistry A, 2013, 1, 707-714.	10.3	71
68	Preparation and electrochemical characterization of LiFePO4 nanoparticles with high rate capability by a sol–gel method. Journal of Alloys and Compounds, 2010, 491, 668-672.	5.5	70
69	A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale, 2013, 5, 10636.	5.6	68
70	Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors. Electrochimica Acta, 2017, 228, 131-138.	5.2	66
71	All carbon based high energy lithium-ion capacitors from biomass: The role of crystallinity. Journal of Power Sources, 2019, 414, 96-102.	7.8	66
72	Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 4950-4959.	10.3	66

#	Article	IF	CITATIONS
73	Synthesis and Enhanced Lithium Storage Properties of Electrospun V ₂ O ₅ Nanofibers in Full-Cell Assembly with a Spinel Li ₄ Ti ₅ O ₁₂ Anode. ACS Applied Materials & Interfaces, 2013, 5, 3475-3480.	8.0	63
74	Developments and Perspectives on Robust Nano―and Microstructured Binderâ€Free Electrodes for Bifunctional Water Electrolysis and Beyond. Advanced Energy Materials, 2022, 12, .	19.5	63
75	Effect of LiBOB Additive on the Electrochemical Performance of LiCoPO ₄ . Journal of the Electrochemical Society, 2012, 159, A1435-A1439.	2.9	60
76	Sol–Gel Synthesis of Aliovalent Vanadiumâ€Doped LiNi _{0.5} Mn _{1.5} O ₄ Cathodes with Excellent Performance at High Temperatures. ChemSusChem, 2014, 7, 829-834.	6.8	60
77	Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. Journal of Materials Chemistry A, 2016, 4, 5578-5591.	10.3	60
78	Should we recycle the graphite from spent lithium-ion batteries? The untold story of graphite with the importance of recycling. Journal of Energy Chemistry, 2022, 71, 351-369.	12.9	59
79	Formation of NiCo 2 O 4 rods over Co 3 O 4 nanosheets as efficient catalyst for Li–O 2 batteries and water splitting. Journal of Catalysis, 2017, 349, 175-182.	6.2	58
80	Microwave assisted green synthesis of MgO–carbon nanotube composites as electrode material for high power and energy density supercapacitors. Journal of Materials Chemistry A, 2013, 1, 4105.	10.3	57
81	Size controlled synthesis of Li2MnSiO4 nanoparticles: Effect of calcination temperature and carbon content for high performance lithium batteries. Journal of Colloid and Interface Science, 2011, 355, 472-477.	9.4	55
82	Biomassâ€Derived Carbon Materials as Prospective Electrodes for Highâ€Energy Lithium―and Sodiumâ€Ion Capacitors. Chemistry - an Asian Journal, 2019, 14, 936-951.	3.3	55
83	Chemical Lithiation Studies on Combustion Synthesized V ₂ O ₅ Cathodes with Full Cell Application for Lithium Ion Batteries. Journal of the Electrochemical Society, 2013, 160, A1016-A1024.	2.9	54
84	Marine algae inspired pre-treated SnO 2 nanorods bundle as negative electrode for Li-ion capacitor and battery: An approach beyond intercalation. Chemical Engineering Journal, 2017, 324, 26-34.	12.7	53
85	Exceptional performance of a high voltage spinel LiNi _{0.5} Mn _{1.5} O ₄ cathode in all one dimensional architectures with an anatase TiO ₂ anode by electrospinning. Nanoscale, 2014, 6, 8926.	5.6	52
86	Co ₃ O ₄ Nanosheets as Battery-Type Electrode for High-Energy Li-Ion Capacitors: A Sustained Li-Storage <i>via</i> Conversion Pathway. ACS Nano, 2020, 14, 10648-10654.	14.6	52
87	Tube-like carbon for Li-ion capacitors derived from the environmentally undesirable plant: Prosopis juliflora. Carbon, 2016, 98, 58-66.	10.3	51
88	Building Next-Generation Li-ion Capacitors with High Energy: An Approach beyond Intercalation. Journal of Physical Chemistry Letters, 2018, 9, 3946-3958.	4.6	51
89	Biomassâ€Derived Carbon: A Valueâ€Added Journey Towards Constructing Highâ€Energy Supercapacitors in an Asymmetric Fashion. ChemSusChem, 2019, 12, 4353-4382.	6.8	51
90	ZrO2 nanofiller incorporated PVC/PVdF blend-based composite polymer electrolytes (CPE) complexed with LiBOB. Journal of Membrane Science, 2007, 305, 146-151.	8.2	50

#	Article	IF	CITATIONS
91	Polyvinylidene fluoride–hexafluoropropylene (PVdF–HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. Journal of Non-Crystalline Solids, 2008, 354, 3451-3457.	3.1	50
92	High-rate and elevated temperature performance of electrospun V2O5 nanofibers carbon-coated by plasma enhanced chemical vapour deposition. Nano Energy, 2013, 2, 57-64.	16.0	50
93	Extraordinary long-term cycleability of TiO ₂ -B nanorods as anodes in full-cell assembly with electrospun PVdF-HFP membranes. Journal of Materials Chemistry A, 2013, 1, 308-316.	10.3	50
94	Synthesis of 2D/2D Structured Mesoporous Co ₃ O ₄ Nanosheet/Nâ€Đoped Reduced Graphene Oxide Composites as a Highly Stable Negative Electrode for Lithium Battery Applications. Chemistry - an Asian Journal, 2015, 10, 1776-1783.	3.3	50
95	LiFePO4 modified Li1.02(Co0.9Fe0.1)0.98PO4 cathodes with improved lithium storage properties. Journal of Materials Chemistry, 2011, 21, 6510.	6.7	49
96	A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries. Solid State Sciences, 2007, 9, 1069-1073.	3.2	48
97	High energy Li-ion capacitor and battery using graphitic carbon spheres as an insertion host from cooking oil. Journal of Materials Chemistry A, 2018, 6, 3242-3248.	10.3	48
98	Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode. RSC Advances, 2012, 2, 7534.	3.6	47
99	Free-standing electrospun carbon nanofibres—a high performance anode material for lithium-ion batteries. Journal Physics D: Applied Physics, 2012, 45, 265302.	2.8	47
100	Two Dimensional TiS ₂ as a Promising Insertion Anode for Naâ€lon Battery. ChemistrySelect, 2018, 3, 524-528.	1.5	47
101	Electrochemical Lithium Insertion Behavior of Combustion Synthesized V2O5Cathodes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A273-A280.	2.9	46
102	LiCrTiO ₄ : A Highâ€Performance Insertion Anode for Lithiumâ€ion Batteries. ChemPhysChem, 2012, 13, 3263-3266.	2.1	46
103	Macroporous carbon from human hair: A journey towards the fabrication of high energy Li-ion capacitors. Electrochimica Acta, 2015, 182, 474-481.	5.2	46
104	Morphology controlled lithium storage in Li ₃ VO ₄ anodes. Journal of Materials Chemistry A, 2018, 6, 456-463.	10.3	46
105	Characterization of SiO ₂ and Al ₂ O ₃ incorporated PVdFâ€HFP based composite polymer electrolytes with LiPF ₃ (CF ₃ CF ₂) ₃ . Journal of Applied Polymer Science, 2008, 108, 1314-1322.	2.6	45
106	Does carbon coating really improves the electrochemical performance of electrospun SnO2 anodes?. Electrochimica Acta, 2014, 121, 109-115.	5.2	45
107	Synthesis and improved electrochemical properties of Li ₂ MnSiO ₄ cathodes. Journal Physics D: Applied Physics, 2011, 44, 152001.	2.8	43
108	Ultrathin Polyimide Coating for a Spinel LiNi0.5Mn1.5O4Cathode and Its Superior Lithium Storage Properties under Elevated Temperature Conditions. Journal of the Electrochemical Society, 2013, 160, A1003-A1008.	2.9	42

#	Article	IF	CITATIONS
109	From Electrodes to Electrodes: Building Highâ€Performance Liâ€Ion Capacitors and Batteries from Spent Lithiumâ€Ion Battery Carbonaceous Materials. ChemElectroChem, 2019, 6, 1407-1412.	3.4	42
110	Polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer electrolytes (NCPE) complexed with LiPF3(CF3CF2)3. European Polymer Journal, 2007, 43, 5121-5127.	5.4	41
111	High performance lithium-ion cells using one dimensional electrospun TiO2 nanofibers with spinel cathode. RSC Advances, 2012, 2, 7983.	3.6	41
112	Carbon oated LiTi ₂ (PO ₄) ₃ : An Ideal Insertion Host for Lithiumâ€ion and Sodiumâ€ion Batteries. Chemistry - an Asian Journal, 2014, 9, 878-882.	3.3	40
113	βâ€Co(OH) ₂ Nanosheets: A Superior Pseudocapacitive Electrode for Highâ€Energy Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 2127-2133.	3.3	40
114	Electrochemical Performance of α-MnO ₂ Nanorods/Activated Carbon Hybrid Supercapacitor. Nanoscience and Nanotechnology Letters, 2012, 4, 724-728.	0.4	40
115	Solvent Co-intercalation: An Emerging Mechanism in Li-, Na-, and K-Ion Capacitors. ACS Energy Letters, 2021, 6, 4228-4244.	17.4	40
116	Carbon Coated NASICON Type Li ₃ V _{2<i>-x</i>} M <i>_x</i> (PO ₄) ₃ (M=Mn, Fe) Tj I	ETQg0 0 0	rgBT /Overlo
	Society, 2013, 160, A87-A92.		
117	Pre-lithiated Li x Mn 2 O 4 : A new approach to mitigate the irreversible capacity loss in negative electrodes for Li-ion battery. Electrochimica Acta, 2016, 208, 225-230.	5.2	39
118	High energy Li-ion capacitors with conversion type Mn ₃ O ₄ particulates anchored to few layer graphene as the negative electrode. Journal of Materials Chemistry A, 2016, 4, 15134-15139.	10.3	39
119	Overlithiated Li 1+x Ni 0.5 Mn 1.5 O 4 in all one dimensional architecture with conversion type α-Fe 2 O 3 : A new approach to eliminate irreversible capacity loss. Electrochimica Acta, 2016, 215, 647-651.	5.2	39
120	Rusted iron wire waste into high performance anode (α-Fe ₂ O ₃) for Li-ion batteries: an efficient waste management approach. Green Chemistry, 2016, 18, 1395-1404.	9.0	39
121	Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability. Energy Storage Materials, 2020, 25, 702-713.	18.0	39
122	Lithium fluoroalkylphosphate based novel composite polymer electrolytes (NCPE) incorporated with nanosized SiO2 filler. Materials Chemistry and Physics, 2009, 115, 251-257.	4.0	37
123	Li+ ion conduction in TiO2 filled polyvinylidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB. Current Applied Physics, 2009, 9, 1474-1479.	2.4	36
124	Li(Mn1/3Ni1/3Fe1/3)O2–Polyaniline hybrids as cathode active material with ultra-fast charge–discharge capability for lithium batteries. Journal of Power Sources, 2013, 232, 240-245.	7.8	36
125	Interface charge density modulation of a lamellar-like spatially separated Ni9S8 nanosheet/Nb2O5 nanobelt heterostructure catalyst coupled with nitrogen and metal (MÂ=ÂCo, Fe, or Cu) atoms to accelerate acidic and alkaline hydrogen evolution reactions. Chemical Engineering Journal, 2022, 431, 134073.	12.7	36
126	Investigations on Na+ ion conducting polyvinylidenefluoride-co-hexafluoropropylene/poly ethylmethacrylate blend polymer electrolytes. Current Applied Physics, 2009, 9, 1106-1111.	2.4	35

#	Article	IF	CITATIONS
127	Focus on Spinel Li ₄ Ti ₅ O ₁₂ as Insertion Type Anode for Highâ€Performance Naâ€lon Batteries. Small, 2019, 15, e1904484.	10.0	35
128	Realizing the Performance of LiCoPO4Cathodes by Fe Substitution with Off-Stoichiometry. Journal of the Electrochemical Society, 2012, 159, A1013-A1018.	2.9	34
129	Carbonâ€Coated Li ₃ Nd ₃ W ₂ O ₁₂ : A High Power and Lowâ€Voltage Insertion Anode with Exceptional Cycleability for Liâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1301715.	19.5	34
130	Ultralong Durability of Porous αâ€Fe ₂ O ₃ Nanofibers in Practical Liâ€Ion Configuration with LiMn ₂ O ₄ Cathode. Advanced Science, 2015, 2, 1500050.	11.2	34
131	Nanostructured intermetallic FeSn2-carbonaceous composites as highly stable anode for Na-ion batteries. Journal of Power Sources, 2017, 343, 296-302.	7.8	34
132	Exceptional catalytic activity of hollow structured La _{0.6} Sr _{0.4} CoO _{3â~îÎ} perovskite spheres in aqueous media and aprotic Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 18029-18037.	10.3	33
133	Exploring the usage of LiCrTiO4 as cathode towards constructing 1.4ÂV class Li-ion cells with graphite anode recovered from spent Li-Ion battery. Chemical Engineering Journal, 2020, 397, 125472.	12.7	33
134	Manipulation of adipic acid application on the electrochemical properties of LiFePO4 at high rate performance. Journal of Alloys and Compounds, 2011, 509, 1279-1284.	5.5	31
135	High energy Li-ion capacitors using two-dimensional TiSe _{0.6} S _{1.4} as insertion host. Journal of Materials Chemistry A, 2017, 5, 19819-19825.	10.3	31
136	Superior charge-transfer kinetics of NASICON-type Li3V2(PO4)3 cathodes by multivalent Al3+ and Clâ^' substitutions. Electrochimica Acta, 2013, 97, 210-215.	5.2	29
137	Elongated graphitic hollow nanofibers from vegetable oil as prospective insertion host for constructing advanced high energy Li-lon capacitor and battery. Carbon, 2018, 134, 9-14.	10.3	29
138	Stibium: A Promising Electrode toward Building High-Performance Na-Ion Full-Cells. CheM, 2019, 5, 3096-3126.	11.7	29
139	LiMnBO3/C: A Potential Cathode Material for Lithium Batteries. Bulletin of the Korean Chemical Society, 2010, 31, 1506-1508.	1.9	29
140	Polyvinylidene fluorideâ€based novel polymer electrolytes for magnesiumâ€rechargeable batteries with Mg(CF ₃ SO ₃) ₂ . Journal of Applied Polymer Science, 2009, 112, 3024-3029.	2.6	28
141	Electrospun TiO2â [~] δ Nanofibers as Insertion Anode for Li-Ion Battery Applications. Journal of Physical Chemistry C, 2014, 118, 16776-16781.	3.1	28
142	Fabrication of New 2.4â€V Lithiumâ€lon Cell with Carbon oated LiTi ₂ (PO ₄) ₃ as the Cathode. ChemElectroChem, 2015, 2, 231-235.	3.4	28
143	A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for Lithium-ion batteries. Ionics, 2007, 13, 277-280.	2.4	26
144	Lithium difluoro(oxalate)borateâ€based novel nanocomposite polymer electrolytes for lithium ion batteries. Polymer International, 2008, 57, 932-938.	3.1	26

#	Article	IF	CITATIONS
145	Superior Lithium Storage Properties of Carbon Coated Li2MnSiO4 Cathodes. Electrochemical and Solid-State Letters, 2011, 14, A33.	2.2	26
146	Supersaturated "water-in-salt―hybrid electrolyte towards building high voltage Na-ion capacitors with wide temperatures operation. Journal of Power Sources, 2020, 472, 228558.	7.8	26
147	Electrochemical performance of hematite nanoparticles derived from spherical maghemite and elongated goethite particles. Journal of Power Sources, 2015, 276, 291-298.	7.8	25
148	Atomic layer deposition of Al2O3 on P2-Na0.5Mn0.5Co0.5O2 as interfacial layer for high power sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 564, 467-477.	9.4	25
149	Highly Reversible Naâ€Intercalation into Graphite Recovered from Spent Li–Ion Batteries for Highâ€Energy Naâ€Ion Capacitor. ChemSusChem, 2020, 13, 5654-5663.	6.8	25
150	Sandwich layered Li0.32Al0.68MnO2(OH)2 from spent Li-ion battery to build high-performance supercapacitor: Waste to energy storage approach. Journal of Alloys and Compounds, 2020, 827, 154336.	5.5	25
151	Restricted lithiation into a layered V ₂ O ₅ cathode towards building "rocking-chair―type Li-ion batteries and beyond. Journal of Materials Chemistry A, 2020, 8, 9483-9495.	10.3	25
152	Synthesis and characterization of LiBOBâ€based PVdF/PVCâ€TiO ₂ composite polymer electrolytes. Polymer Engineering and Science, 2009, 49, 2109-2115.	3.1	24
153	Synthesis and enhanced electrochemical performance of Li2CoPO4F cathodes under high current cycling. Physical Chemistry Chemical Physics, 2012, 14, 11904.	2.8	24
154	Influence of synthesis technique on the structural and electrochemical properties of "cobalt-freeâ€, layered type Li1+x(Mn0.4Ni0.4Fe0.2)1â^'xO2 (0 <x<0.4) cathode="" for="" lithium="" material="" secondary<br="">battery. Electrochimica Acta, 2013, 108, 749-756.</x<0.4)>	5.2	24
155	Regeneration of Polyolefin Separators from Spent Liâ€lon Battery for Second Life. Batteries and Supercaps, 2020, 3, 581-586.	4.7	24
156	Improved Cycle Performance of Sulfur-Doped LiFePO4Material at High Temperatures. Bulletin of the Korean Chemical Society, 2009, 30, 2223-2226.	1.9	24
157	The important role of adipic acid on the synthesis of nanocrystalline lithium iron phosphate with high rate performance. Journal of Alloys and Compounds, 2010, 495, 181-184.	5.5	23
158	Selfâ€Assembled Ultrathin Anatase TiO ₂ Nanosheets with Reactive (001) Facets for Highly Enhanced Reversible Li Storage. ChemElectroChem, 2014, 1, 539-543.	3.4	23
159	Carbon coated LiTi2(PO4)3 as new insertion anode for aqueous Na-ion batteries. Journal of Alloys and Compounds, 2014, 603, 48-51.	5.5	23
160	Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life. Electrochimica Acta, 2014, 146, 218-223.	5.2	23
161	Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Storage Materials, 2015, 1, 152-157.	18.0	23
162	A comparative evaluation of differently synthesized high surface area carbons for Li-ion hybrid electrochemical supercapacitor application: Pore size distribution holds the key. Applied Materials Today, 2016, 2, 1-6.	4.3	23

#	Article	IF	CITATIONS
163	Impact of carbonate-based electrolytes on the electrochemical activity of carbon-coated Na3V2(PO4)2F3 cathode in full-cell assembly with hard carbon anode. Journal of Colloid and Interface Science, 2021, 582, 51-59.	9.4	23
164	Dual-carbon Na-ion capacitors: progress and future prospects. Journal of Materials Chemistry A, 2021, 9, 9431-9450.	10.3	23
165	Next-generation Li-ion capacitor with high energy and high power by limiting alloying-intercalation process using SnO2@Graphite composite as battery type electrode. Composites Part B: Engineering, 2022, 230, 109487.	12.0	23
166	Effects of TiO2and ZrO2nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE). Journal Physics D: Applied Physics, 2007, 40, 6754-6759.	2.8	21
167	Synthesis and characterization of novel LiFeBO3/C cathodes for lithium batteries. Ionics, 2012, 18, 27-30.	2.4	21
168	Comparison among the performance of LiBOB, LiDFOB and LiFAP impregnated polyvinylidenefluoride-hexafluoropropylene nanocomposite membranes by phase inversion for lithium batteries. Current Applied Physics, 2013, 13, 293-297.	2.4	21
169	Highly Stable Intermetallic FeSn ₂ â€Graphite Composite Anode for Sodiumâ€lon Batteries. ChemElectroChem, 2017, 4, 1932-1936.	3.4	21
170	Highly Perforated V ₂ O ₅ Cathode with Restricted Lithiation toward Building "Rocking hair―Type Cell with Graphite Anode Recovered from Spent Liâ€ l on Batteries. Small, 2020, 16, e2002624.	10.0	21
171	Improved performance of polyvinylidenefluoride–hexafluoropropylene based nanocomposite polymer membranes containing lithium bis(oxalato)borate by phase inversion for lithium batteries. Solid State Sciences, 2011, 13, 1047-1051.	3.2	20
172	Tailoring three dimensional α–MnO2/RuO2 hybrid nanostructure as prospective bifunctional catalyst for Li–O2 batteries. Electrochimica Acta, 2016, 212, 701-709.	5.2	20
173	Synthesis of SnS2 single crystals and its Li-storage performance with LiMn2O4 cathode. Applied Materials Today, 2016, 5, 68-72.	4.3	19
174	Recycling/Reuse of Current Collectors from Spent Lithiumâ€lon Batteries: Benefits and Issues. Advanced Sustainable Systems, 2022, 6, .	5.3	19
175	Copper-substituted, lithium rich iron phosphate as cathode material for lithium secondary batteries. Journal of Alloys and Compounds, 2009, 488, 380-385.	5.5	18
176	Mesoscopic magnetic iron oxide spheres for high performance Li-ion battery anode: a new pulsed laser induced reactive micro-bubble synthesis process. Journal of Materials Chemistry A, 2013, 1, 13932.	10.3	18
177	Exploring the influence of iron substitution in lithium rich layered oxides Li ₂ Ru _{1â^'x} Fe _x O ₃ : triggering the anionic redox reaction. Journal of Materials Chemistry A, 2017, 5, 14387-14396.	10.3	18
178	High power Na-ion capacitor with TiS2 as insertion host. Scripta Materialia, 2019, 161, 54-57.	5.2	18
179	Deciphering the Structure–Property Relationship of Na–Mn–Co–Mg–O as a Novel High-Capacity Layered–Tunnel Hybrid Cathode and Its Application in Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 10268-10279.	8.0	18
180	Fabrication of High Energy Li–Ion Capacitors from Orange Peel Derived Porous Carbon. ChemistrySelect, 2017, 2, 5051-5058.	1.5	17

#	Article	IF	CITATIONS
181	Solvothermal synthesis of Li3VO4: Morphology control and electrochemical performance as anode for lithium-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 22167-22174.	7.1	17
182	Tailored perovskite Li0.33La0.56TiO3 via an adipic acid-assisted solution process: A promising solid electrolyte for lithium batteries. Journal of Alloys and Compounds, 2017, 729, 338-343.	5.5	17
183	Non-aqueous energy storage devices using graphene nanosheets synthesized by green route. AIP Advances, 2013, 3, .	1.3	16
184	Enhanced elevated temperature performance of LiFePO4 modified spinel LiNi0.5Mn1.5O4 cathode. Journal of Alloys and Compounds, 2014, 612, 51-55.	5.5	16
185	(0 0 1) faceted mesoporous anatase TiO 2 microcubes as superior insertion anode in practical Li-ion configuration with LiMn 2 O 4. Energy Storage Materials, 2016, 3, 106-112.	18.0	16
186	Practical Li-Ion Battery Assembly with One-Dimensional Active Materials. Journal of Physical Chemistry Letters, 2017, 8, 4031-4037.	4.6	16
187	Electrochemical Activity of Hematite Phase in Fullâ€Cell Liâ€ion Assemblies. Advanced Energy Materials, 2018, 8, 1702841.	19.5	16
188	LiBO2-modified LiCoO2 as an efficient cathode with garnet framework Li6.75La3Zr1.75Nb0.25O12 electrolyte toward building all-solid-state lithium battery for high-temperature operation. Electrochimica Acta, 2020, 359, 136955.	5.2	16
189	Nanoparticulate AlO(OH)n filled polyvinylidenefluoride- <i>co</i> -hexafluoropropylene based microporous membranes for lithium ion batteries. Journal of Renewable and Sustainable Energy, 2009, 1, .	2.0	15
190	Importance of nanostructure for reversible Li-insertion into octahedral sites of LiNi0.5Mn1.5O4 and its application towards aqueous Li-ion chemistry. Journal of Power Sources, 2015, 280, 240-245.	7.8	15
191	Red Mud and Liâ€lon Batteries: A Magnetic Connection. ChemSusChem, 2016, 9, 2193-2200.	6.8	15
192	Orderly meso-perforated spherical and apple-shaped 3D carbon microstructures for high-energy supercapacitors and high-capacity Li-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6422-6434.	10.3	15
193	LiFAP-based PVdF–HFP microporous membranes byÂphase-inversion technique with Li/LiFePO4 cell. Applied Physics A: Materials Science and Processing, 2009, 97, 811-819.	2.3	14
194	High surface area porous carbon for ultracapacitor application by pyrolysis of polystyrene containing pendant carboxylic acid groups prepared via click chemistry. Materials Today Communications, 2015, 4, 166-175.	1.9	14
195	Graphene based nanocomposites for alloy (SnO2), and conversion (Fe3O4) type efficient anodes for Li-ion battery applications. Composites Science and Technology, 2016, 130, 88-95.	7.8	14
196	Liâ€ion Capacitor via Solventâ€Coâ€Intercalation Process from Spent Liâ€ion Batteries. Batteries and Supercaps, 2021, 4, 671-679.	4.7	14
197	Fabrication of Naâ€lon Fullâ€Cells using Carbonâ€Coated Na ₃ V ₂ (PO ₄) ₂ O ₂ F Cathode with Conversion Type CuO Nanoparticles from Spent Liâ€lon Batteries. Small Methods, 2022, 6, e2200257.	8.6	14
198	lonic transport, thermal, XRD, and phase morphological studies on LiCF3SO3-based PVC–PVdF gel electrolytes. Ionics, 2009, 15, 433-437.	2.4	13

#	Article	IF	CITATIONS
199	Cu–Li2MnSiO4-polyaniline composite hybrids as high performance cathode for lithium batteries. Journal of Alloys and Compounds, 2015, 630, 292-298.	5.5	13
200	Exploring Anatase TiO ₂ Nanofibers as New Cathode for Constructing 1.6 V Class "Rockingâ€Chair―Type Liâ€Ion Cells. Particle and Particle Systems Characterization, 2016, 33, 306-310.	2.3	13
201	Confined ZrO2 encapsulation over high capacity integrated 0.5Li[Ni0.5Mn1.5]O4·0.5[Li2MnO3·Li(Mn0.5Ni0.5)O2] cathode with enhanced electrochemical performance. Electrochimica Acta, 2016, 194, 454-460.	5.2	13
202	A novel approach to employ Li2MnSiO4 as anode active material for lithium batteries. Ionics, 2011, 17, 3-6.	2.4	12
203	Understanding the exceptional elevated temperature performance of high voltage LiNi0.5Mn1.5O4 cathodes by LiFePO4 modification. Electrochimica Acta, 2014, 137, 404-410.	5.2	12
204	Electrochemically Generated γâ€Li x V 2 O 5 as Insertion Host for Highâ€Energy Liâ€Ion Capacitors. Chemistry - an Asian Journal, 2019, 14, 4665-4672.	3.3	12
205	Interfacial Engineering in a Cathode Composite Based on Garnetâ€Type Solidâ€State Liâ€Ion Battery with High Voltage Cycling. ChemElectroChem, 2021, 8, 570-576.	3.4	12
206	LiVPO ₄ F: A New Cathode for High-Energy Lithium Ion Capacitors. ChemistrySelect, 2016, 1, 3316-3322.	1.5	11
207	Efficient bifunctional catalytic activity of nanoscopic Pd-decorated La0.6Sr0.4CoO3- perovskite toward Li–O2 battery, oxygen reduction, and oxygen evolution reactions. Journal of Industrial and Engineering Chemistry, 2019, 80, 686-695.	5.8	11
208	High energy Na-Ion capacitor employing graphitic carbon fibers from waste rubber with diglyme-based electrolyte. Chemical Engineering Journal, 2021, 426, 130892.	12.7	11
209	Recent advancements in LiCoPO4 cathodes using electrolyte additives. Current Opinion in Electrochemistry, 2022, 31, 100868.	4.8	11
210	Unveiling the Fabrication of "Rocking-Chair―Type 3.2 and 1.2 V Class Cells Using Spinel LiNi _{0.5} Mn _{1.5} O ₄ as Cathode with Li ₄ Ti ₅ O ₁₂ . Journal of Physical Chemistry C, 2015, 119, 24332-24336.	3.1	10
211	Exploring Highâ€Energy Liâ€I(r)on Batteries and Capacitors with Conversionâ€Type Fe ₃ 0 ₄ â€rGO as the Negative Electrode. ChemElectroChem, 2017, 4, 2626-2633.	3.4	10
212	Binary NaCl–NaF and NaCl–LiF Flux-Mediated Growth of Mixed-Valence (V ^{3+/4+}) NASICON-Type Na ₃ V ₂ (PO ₄) ₂ F _{2.5} O _{0.5} and Na _{2.4} Li _{0.6} V ₂ (PO ₄) ₂ A) ₂ A) ₂ A) ₂ A)AA)AAA </td <td>5.1 .5</td> <td>10</td>	5.1 .5	10
213	for Highly Reversible Na- and Li-Ion Storage. ACS Applied Energy Materials, 2021, 4, 1387-1397. Graphene from Spent Lithiumâ€Ion Batteries. Batteries and Supercaps, 2022, 5, .	4.7	10
214	A study on the blending effect of polyvinyledene fluoride in the ionic transport mechanism of plasticized polyvinyl chloride + lithium perchlorate gel polymer electrolytes. Ionics, 2007, 13, 355-360.	2.4	9
215	Effect of aging on the ionic conductivity of polyvinylidenefluoride–hexafluoropropylene (PVdF–HFP) membrane impregnated with different lithium salts. Indian Journal of Physics, 2012, 86, 341-344.	1.8	9
216	Fabrication of 4.7ÂV class "rocking-chair―type Li-ion cells with carbon-coated LiCoPO4 as cathode and graphite anode. Materials Letters, 2021, 291, 129609.	2.6	9

#	Article	IF	CITATIONS
217	Transformation of Spent Liâ€lon Battery in to High Energy Supercapacitors in Asymmetric Configuration. ChemElectroChem, 2019, 6, 5283-5292.	3.4	8
218	Naâ€lon Battery with Graphite Anode and Na ₃ V ₂ (PO ₄) ₃ Cathode via Solventâ€Coâ€lntercalation Process. Advanced Materials Technologies, 2022, 7, .	5.8	8
219	Characterization of poly(vinylidenefluoride-co-hexafluoroprolylene) membranes containing nanoscopic AlO(OH)n filler with Li/LiFePO4 cell. Journal of Renewable and Sustainable Energy, 2010, 2, 033105.	2.0	7
220	Synthesis and optimization of NASICON-type Li3V2(PO4)3 by adipic acid-mediated solid-state approach. Journal of Applied Electrochemistry, 2013, 43, 583-593.	2.9	7
221	3D Interconnected Porous Graphene Sheets Loaded with Cobalt Oxide Nanoparticles for Lithium″on Battery Anodes. Energy Technology, 2016, 4, 816-822.	3.8	7
222	Metalâ€ion Capacitors with Anion Intercalation Process. Advanced Energy and Sustainability Research, 2021, 2, 2000069.	5.8	7
223	Lithium ion transport in PVC/PEG 2000 blend polymer electrolytes complexed with LiX (X=ClO 4 â~', BF 4) Tj ETQ	2q110.78 2.4	4314 rgBT C
224	Choice of Binder on Conversion Type CuO Nanoparticles toward Building High Energy Liâ€lon Capacitors: An Approach Beyond Intercalation. Advanced Materials Technologies, 2022, 7, .	5.8	6
225	Influence of dilution effect on the electrochemical performance of integrated 0.5Li(Mn1.5Ni0.5)O4. 0.5(Li2MnO3–Li(Mn0.5Ni0.5)O2) cathodes. Ceramics International, 2014, 40, 13033-13039.	4.8	5
226	Electrochemical Route to Alleviate Irreversible Capacity Loss from Conversion Type α-Fe ₂ O ₃ Anodes by LiVPO ₄ F Prelithiation. ACS Applied Energy Materials, 0, , .	5.1	5
227	Modulating Anion Redox Activity of Li _{1.2} Mn _{0.54} Ni _{0.13} Co _{0.13} O ₂ through Strong Sr–O Bonds toward Achieving Stable Li-Ion Half-/Full-Cell Performance. ACS Applied Energy Materials, 2021, 4, 11234-11247.	5.1	5
228	Highâ€performance Liâ€ion capacitor via anionâ€intercalation process. , 2022, 1, .		5
229	Ternary metal oxide filled PEO-based polymer electrolyte for solid-state lithium metal battery: The role of filler particle size. Solid State Sciences, 2022, 132, 106958.	3.2	5
230	Polyvinylidenefluoride (PVdF) based novel polymer electrolytes complexed with Mg(ClO ₄) ₂ . EPJ Applied Physics, 2009, 45, 11101.	0.7	4
231	Experimental investigations of SiO2 based ferrite magnetic tunnel junction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 937-941.	3.5	4
232	Ex situ XAS investigation of effect of binders on electrochemical performance of Li ₂ Fe(SO ₄) ₂ cathode. Journal of Materials Chemistry A, 2017, 5, 19963-19971.	10.3	4
233	Unusual Liâ€Storage Behaviour of Twoâ€Dimensional ReS ₂ Single Crystals. Batteries and Supercaps, 2018, 1, 69-74.	4.7	4
234	Stabilizing the high voltage LiCoPO4 cathode via Fe-doping in the gram-scale synthesis. Electrochimica Acta, 2022, 419, 140367.	5.2	4

#	Article	IF	CITATIONS
235	Pencil Powered Faradaic Electrode for Lithiumâ€lon Capacitors with High Energy and Wide Temperature Operation. Batteries and Supercaps, 2022, 5, .	4.7	4
236	Structural, Thermal, and Electrochemical Studies of Novel Li ₂ Co _{<i>x</i>} Mn _{1–<i>x</i>} (SO ₄) ₂ Bimetallic Sulfates. Journal of Physical Chemistry C, 2017, 121, 24971-24978.	3.1	3
237	Pencil Scripted Ultrathin Graphene Nanostructure as Binderâ€Free Batteryâ€Type Electrode for Liâ€lon Microâ€Capacitors with Excellent Performance. Energy Technology, 0, , 2200205.	3.8	3
238	Palladium―and Goldâ€Nanoparticleâ€Modified Porous Carbon as a Highâ€Power Anode for Lithiumâ€ŀon Batteries. ChemPhysChem, 2013, 14, 3887-3890.	2.1	2
239	Exploring two dimensional Co0.33In2.67S2.29Se1.71 as alloy type negative electrode for Li-ion battery with olivine LiFePO4 cathode. Materials Today Energy, 2018, 9, 19-26.	4.7	2
240	V2O5 vs. LiFePO4: Who is performing better in the 3.4ÂV class category? A performance evaluation in "Rocking-chair―configuration with graphite anode. Journal of Industrial and Engineering Chemistry, 2022, 112, 389-397.	5.8	2
241	Bulk metal-derived metal oxide nanoparticles on oxidized carbon surface. Journal of Alloys and Compounds, 2018, 752, 198-205.	5.5	1
242	Corrigendum to "Surface enriched graphene hollow spheres towards building ultra-high power sodium-ion capacitor with long durability―[Energy Storage Mater. 25 (2020) 702–713]. Energy Storage Materials, 2020, 27, 599.	18.0	1