Changfu Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830694/publications.pdf

Version: 2024-02-01

29 papers	1,856 citations	18 h-index	29 g-index
35	35	35	3441
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The ZIP8/SIRT1 axis regulates alveolar progenitor cell renewal in aging and idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2022, 132 , .	3.9	37
2	Cell-Type-Specific Immune Dysregulation in Severely III COVID-19 Patients. Cell Reports, 2021, 34, 108590.	2.9	116
3	Spatiotemporal coordination of Greatwall-Endos-PP2A promotes mitotic progression. Journal of Cell Biology, 2021, 220, .	2.3	5
4	Transcriptional analysis of cystic fibrosis airways at single-cell resolution reveals altered epithelial cell states and composition. Nature Medicine, 2021, 27, 806-814.	15.2	101
5	SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Reports, 2021, 35, 109055.	2.9	186
6	Sample processing and single cell RNA-sequencing of peripheral blood immune cells from COVID-19 patients. STAR Protocols, 2021, 2, 100582.	0.5	8
7	Cellular Senescence: Pathogenic Mechanisms in Lung Fibrosis. International Journal of Molecular Sciences, 2021, 22, 6214.	1.8	46
8	Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Science Advances, 2021, 7, .	4.7	10
9	Categorization of lung mesenchymal cells in development and fibrosis. IScience, 2021, 24, 102551.	1.9	46
10	Sexually Dimorphic Crosstalk at the Maternal-Fetal Interface. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4831-e4847.	1.8	48
11	Single-Cell Reconstruction of Human Basal Cell Diversity in Normal and Idiopathic Pulmonary Fibrosis Lungs. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1540-1550.	2.5	107
12	Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 2020, 21, 2269.	1.8	202
13	OR24-07 Fetal Sex Impacts First Trimester Maternal-Fetal Communication in Humans. Journal of the Endocrine Society, 2020, 4, .	0.1	O
14	Isolation and Enrichment of Human Lung Epithelial Progenitor Cells for Organoid Culture. Journal of Visualized Experiments, 2020, , .	0.2	7
15	STK11 is required for the normal program of ciliated cell differentiation in airways. Cell Discovery, 2019, 5, 36.	3.1	26
16	FGF10-FGFR2B Signaling Generates Basal Cells and Drives Alveolar Epithelial Regeneration by Bronchial Epithelial Stem Cells after Lung Injury. Stem Cell Reports, 2019, 12, 1041-1055.	2.3	94
17	Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCI Insight, 2019, 4, .	2.3	50
18	Single-Cell Deconvolution of Fibroblast Heterogeneity in Mouse Pulmonary Fibrosis. Cell Reports, 2018, 22, 3625-3640.	2.9	392

#	Article	IF	CITATIONS
19	Evidence for a role of spindle matrix formation in cell cycle progression by antibody perturbation. PLoS ONE, 2018, 13, e0208022.	1.1	4
20	In vitro Explant Cultures to Interrogate Signaling Pathways that Regulate Mouse Lung Development. Bio-protocol, 2018, 8, e2852.	0.2	2
21	Sin3a regulates epithelial progenitor cell fate during lung development. Development (Cambridge), 2017, 144, 2618-2628.	1.2	29
22	Digitor/dASCIZ Has Multiple Roles in Drosophila Development. PLoS ONE, 2016, 11, e0166829.	1.1	15
23	p53 Regulates Progenitor Cell Quiescence and Differentiation in the Airway. Cell Reports, 2016, 17, 2173-2182.	2.9	62
24	Rare SOX2 + Airway Progenitor Cells Generate KRT5 + Cells that Repopulate Damaged Alveolar Parenchyma following Influenza Virus Infection. Stem Cell Reports, 2016, 7, 817-825.	2.3	116
25	Genome-wide analysis of regulation of gene expression and H3K9me2 distribution by JIL-1 kinase mediated histone H3S10 phosphorylation in Drosophila. Nucleic Acids Research, 2014, 42, 5456-5467.	6.5	21
26	The Spindle Matrix Protein, Chromator, Is a Novel Tubulin Binding Protein That Can Interact with Both Microtubules and Free Tubulin. PLoS ONE, 2014, 9, e103855.	1.1	3
27	A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis. Molecular Biology of the Cell, 2012, 23, 3532-3541.	0.9	26
28	The chromodomain-containing NH2-terminus of Chromator interacts with histone H1 and is required for correct targeting to chromatin. Chromosoma, 2012, 121, 209-220.	1.0	8
29	Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix?. Chromosome Research, 2011, 19, 345-365.	1.0	49