

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830594/publications.pdf Version: 2024-02-01

LIAN LI

#	Article	IF	CITATIONS
1	A new stabilized finite element method for the transient Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 2007, 197, 22-35.	6.6	117
2	A new stabilized finite volume method for the stationary Stokes equations. Advances in Computational Mathematics, 2009, 30, 141-152.	1.6	83
3	A new local stabilized nonconforming finite element method for the Stokes equations. Computing (Vienna/New York), 2008, 82, 157-170.	4.8	53
4	A stabilized finite volume element method for a coupled Stokes–Darcy problem. Applied Numerical Mathematics, 2018, 133, 2-24.	2.1	35
5	A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition. Journal of Computational Physics, 2020, 411, 109400.	3.8	34
6	A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2010, 235, 708-725.	2.0	32
7	Convergence and stability of a stabilized finite volume method for the stationary Navier-Stokes equations. BIT Numerical Mathematics, 2010, 50, 823-842.	2.0	32
8	Unconditional optimal error estimates for BDF2-FEM for a nonlinear Schrödinger equation. Journal of Computational and Applied Mathematics, 2018, 331, 23-41.	2.0	32
9	A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier–Stokes equations. Numerische Mathematik, 2012, 122, 279-304.	1.9	30
10	A weak Galerkin finite element method for the Oseen equations. Advances in Computational Mathematics, 2016, 42, 1473-1490.	1.6	29
11	Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs. Computing (Vienna/New York), 2009, 86, 37-51.	4.8	28
12	Optimal \$\$L^2, H^1\$\$ L 2 , H 1 and \$\$L^infty \$\$ L â^ž analysis of finite volume methods for the stationary Navier–Stokes equations with large data. Numerische Mathematik, 2014, 126, 75-101.	1.9	23
13	A new local stabilized nonconforming finite element method for solving stationary Navier–Stokes equations. Journal of Computational and Applied Mathematics, 2011, 235, 2821-2831.	2.0	19
14	On the semi-discrete stabilized finite volume method for the transient Navier–Stokes equations. Advances in Computational Mathematics, 2013, 38, 281-320.	1.6	17
15	The efficient rotational pressure-correction schemes for the coupling Stokes/Darcy problem. Computers and Mathematics With Applications, 2020, 79, 337-353.	2.7	15
16	A linear, decoupled fractional timeâ€stepping method for the nonlinear fluid–fluid interaction. Numerical Methods for Partial Differential Equations, 2019, 35, 1873-1889.	3.6	14
17	Discontinuous Finite Volume Element Method for a Coupled Non-stationary Stokes–Darcy Problem. Journal of Scientific Computing, 2018, 74, 693-727.	2.3	13
18	A priori and a posteriori estimates of stabilized mixed finite volume methods for the incompressible flow arising in arteriosclerosis. Journal of Computational and Applied Mathematics, 2020, 363, 35-52.	2.0	8

Jian Li

#	Article	IF	CITATIONS
19	The Physics Informed Neural Networks for the unsteady Stokes problemsâ€. International Journal for Numerical Methods in Fluids, 0, , .	1.6	8
20	Superconvergence of a stabilized finite element approximation for the Stokes equations using a local coarse mesh <i>L</i> ² projection. Numerical Methods for Partial Differential Equations, 2012, 28, 115-126.	3.6	6
21	A linear, stabilized, non-spatial iterative, partitioned time stepping method for the nonlinear Navier–Stokes/Navier–Stokes interaction model. Boundary Value Problems, 2019, 2019, .	0.7	6
22	Optimal estimates on stabilized finite volume methods for the incompressible Navier–Stokes model in three dimensions. Numerical Methods for Partial Differential Equations, 2019, 35, 128-154.	3.6	6
23	Decoupled modified characteristic finite element method with different subdomain time steps for nonstationary dual–porosity–Navier–Stokes model. Applied Numerical Mathematics, 2021, 166, 238-271.	2.1	6
24	A multi-level discontinuous Galerkin method for solving the stationary Navier–Stokes equations. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 1403-1411.	1.1	5
25	Penalty finite element approximations for the Stokes equations by <i>L</i> ² projection. Mathematical Methods in the Applied Sciences, 2009, 32, 470-479.	2.3	5
26	A local and parallel Uzawa finite element method for the generalized Navier–Stokes equations. Applied Mathematics and Computation, 2020, 387, 124671.	2.2	5
27	A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis. Advances in Difference Equations, 2019, 2019, .	3.5	3
28	Local and parallel efficient BDF2 and BDF3 rotational pressure-correction schemes for a coupled Stokes/Darcy system. Journal of Computational and Applied Mathematics, 2022, 412, 114326.	2.0	3
29	Analysis of newton multilevel stabilized finite volume method for the threeâ€dimensional stationary Navierâ€Stokes equations. Numerical Methods for Partial Differential Equations, 2013, 29, 2146-2160.	3.6	2
30	A parallel, non-spatial iterative, and rotational pressure projection method for the nonlinear fluid-fluid interaction. Applied Numerical Mathematics, 2021, 165, 119-136.	2.1	1
31	A local parallel superconvergence method for the incompressible flow by coarsening projection. Numerical Methods for Partial Differential Equations, 2015, 31, 1209-1223.	3.6	0
32	A novel <mml:math <br="" altimg="si8.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>â^žanalysis for finite volume approximations of the Stokes problem. Journal of Computational and</mml:mi></mml:mrow></mml:msup></mml:math>	l:n 2i0 <td>nl:onrow></td>	nl :o nrow>
33	Applied Mathematics, 2015, 279, 97-105. Numerical analysis of a Picard multilevel stabilization of mixed finite volume method for the 2D/3D incompressible flow with large data. Numerical Methods for Partial Differential Equations, 2018, 34, 30-50.	3.6	0
34	Recovery type a posteriori error estimates for the conduction convection problem. Numerical Algorithms, 2021, 86, 425-441.	1.9	0
35	Qualitative Analysis of a Three-Species Reaction-Diffusion Model with Modified Leslie-Gower Scheme. Journal of Function Spaces, 2021, 2021, 1-11.	0.9	0
36	A Parallel Robin–Robin Domain Decomposition Method based on Modified Characteristic FEMs for the Time-Dependent Dual-porosity-Navier–Stokes Model with the Beavers–Joseph Interface Condition. Journal of Scientific Computing, 2022, 90, 1.	2.3	0