Haobo Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830518/publications.pdf

Version: 2024-02-01

		31902	3	32761
124	10,745	53		100
papers	citations	h-index		g-index
126	126	126		6784
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes, 2022, 13, 446.	1.0	10
2	Cleavage activation and functional comparison of Manduca sexta serine protease homologs SPH1a, SPH1b, SPH4, and SPH101 in conjunction with SPH2. Insect Biochemistry and Molecular Biology, 2022, 144, 103762.	1.2	10
3	The Micrococcus luteus infection activates a novel melanization pathway of cSP10, cSP4, and cSP8 in Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2022, 147, 103775.	1.2	7
4	Distinct Responses of <i>Thitarodes xiaojinensis</i> \hat{l}^2 -1,3-Glucan Recognition Protein-1 and Immulectin-8 to <i>Ophiocordyceps sinensis</i> and <i>Cordyceps militaris</i> Infection. Journal of Immunology, 2021, 207, 200-209.	0.4	5
5	Characterization and functional analysis of a <i>Relish</i> gene from the Asian corn borer, <i>Ostrinia furnacalis</i> (Guenée). Archives of Insect Biochemistry and Physiology, 2021, 108, e21841.	0.6	3
6	Inhibition of immune pathway-initiating hemolymph protease-14 by Manduca sexta serpin-12, a conserved mechanism for the regulation of melanization and Toll activation in insects. Insect Biochemistry and Molecular Biology, 2020, 116, 103261.	1.2	22
7	Digestion-related proteins in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2020, 126, 103457.	1.2	16
8	Changes in composition and levels of hemolymph proteins during metamorphosis of Manduca sexta. Insect Biochemistry and Molecular Biology, 2020, 127, 103489.	1.2	11
9	Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm, <i>Manduca sexta</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23581-23587.	3.3	36
10	Engineering Dynamic Surface Peptide Networks on Butyrylcholinesterase _{G117H} for Enhanced Organophosphosphorus Anticholinesterase Catalysis. Chemical Research in Toxicology, 2019, 32, 1801-1810.	1.7	3
11	The three-dimensional structure and recognition mechanism of Manduca sexta peptidoglycan recognition protein-1. Insect Biochemistry and Molecular Biology, 2019, 108, 44-52.	1.2	8
12	Integrated Modeling of Structural Genes Using MCuNovo. Methods in Molecular Biology, 2019, 1858, 45-57.	0.4	2
13	Manipulation of the silkworm immune system by a metalloprotease from the pathogenic bacterium Pseudomonas aeruginosa. Developmental and Comparative Immunology, 2019, 90, 176-185.	1.0	10
14	Expression and Characterization of <i>Manduca sexta</i> Stress Responsive Peptide-1; An Inducer of Antimicrobial Peptide Synthesis. Biochemistry and Molecular Biology, 2019, 4, 42.	0.2	1
15	The Manduca sexta serpinome: Analysis of serpin genes and proteins in the tobacco hornworm. Insect Biochemistry and Molecular Biology, 2018, 102, 21-30.	1.2	24
16	Building a platform for predicting functions of serine protease-related proteins in Drosophila melanogaster and other insects. Insect Biochemistry and Molecular Biology, 2018, 103, 53-69.	1.2	51
17	Manduca sexta serpin-12 controls the prophenoloxidase activation system in larval hemolymph. Insect Biochemistry and Molecular Biology, 2018, 99, 27-36.	1.2	16
18	Clip domain prophenoloxidase activating protease is required for Ostrinia furnacalis Guenée to defend against bacterial infection. Developmental and Comparative Immunology, 2018, 87, 204-215.	1.0	17

#	Article	IF	CITATIONS
19	Manduca sexta hemolymph protease-2 (HP2) activated by HP14 generates prophenoloxidase-activating protease-2 (PAP2) in wandering larvae and pupae. Insect Biochemistry and Molecular Biology, 2018, 101, 57-65.	1.2	18
20	Identification and characterization of serpin genes in <i>Manduca sexta</i> . FASEB Journal, 2018, 32, .	0.2	0
21	Hemolymph proteins of Anopheles gambiae larvae infected by Escherichia coli. Developmental and Comparative Immunology, 2017, 74, 110-124.	1.0	11
22	Manduca sexta hemolymph protease-1, activated byÂanÂunconventional non-proteolytic mechanism, mediatesÂimmuneÂresponses. Insect Biochemistry and Molecular Biology, 2017, 84, 23-31.	1.2	23
23	Prophenoloxidase activation and antimicrobial peptide expression induced by the recombinant microbe binding protein of Manduca sexta. Insect Biochemistry and Molecular Biology, 2017, 83, 35-43.	1.2	25
24	Serpin-9 and -13 regulate hemolymph proteases during immune responses of Manduca sexta. Insect Biochemistry and Molecular Biology, 2017, 90, 71-81.	1.2	17
25	Serine protease-related proteins in the malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2017, 88, 48-62.	1.2	54
26	Improving the baculovirus expression vector system with vankyrinâ€enhanced technology. Biotechnology Progress, 2017, 33, 1496-1507.	1.3	26
27	Improved annotation of the insect vector of citrus greening disease: biocuration by a diverse genomics community. Database: the Journal of Biological Databases and Curation, 2017, 2017, .	1.4	62
28	An analysis of 67 RNA-seq datasets from various tissues at different stages of a model insect, Manduca sexta. BMC Genomics, 2017, 18, 796.	1.2	34
29	Changes in the Plasma Proteome of Manduca sexta Larvae in Relation to the Transcriptome Variations after an Immune Challenge: Evidence for High Molecular Weight Immune Complex Formation. Molecular and Cellular Proteomics, 2016, 15, 1176-1187.	2.5	31
30	The structure of a prophenoloxidase (PPO) from Anopheles gambiae provides new insights into the mechanism of PPO activation. BMC Biology, 2016 , 14 , 2 .	1.7	31
31	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	1.2	154
32	In search of a function of Manduca sexta hemolymph protease-1 in the innate immune system. Insect Biochemistry and Molecular Biology, 2016, 76, 1-10.	1.2	27
33	Solution Structure and Expression Profile of an Insect Cytokine: Manduca sexta Stress Response Peptide-2. Protein and Peptide Letters, 2016, 24, 3-11.	0.4	10
34	Structural features, evolutionary relationships, and transcriptional regulation of C-type lectin-domain proteins in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 75-85.	1.2	65
35	Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 100-113.	1.2	60
36	A genome-wide analysis of antimicrobial effector genes and their transcription patterns in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 23-37.	1.2	43

#	Article	IF	CITATIONS
37	Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochemistry and Molecular Biology, 2015, 62, 114-126.	1.2	95
38	Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 38-50.	1.2	44
39	The immune signaling pathways of Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 64-74.	1.2	79
40	High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. BMC Genomics, 2015, 16, 321.	1.2	100
41	Clip-domain serine proteases as immune factors in insect hemolymph. Current Opinion in Insect Science, 2015, 11, 47-55.	2.2	194
42	Integrated modeling of protein-coding genes in the Manduca sexta genome using RNA-Seq data from the biochemical model insect. Insect Biochemistry and Molecular Biology, 2015, 62, 2-10.	1.2	20
43	Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta. Insect Biochemistry and Molecular Biology, 2015, 62, 51-63.	1.2	82
44	Identification and profiling of Manduca sexta microRNAs and their possible roles in regulating specific transcripts in fat body, hemocytes, and midgut. Insect Biochemistry and Molecular Biology, 2015, 62, 11-22.	1.2	26
45	Modulation of Anopheles stephensi Gene Expression by Nitroquine, an Antimalarial Drug against Plasmodium yoelii Infection in the Mosquito. PLoS ONE, 2014, 9, e89473.	1.1	7
46	Identification of conserved and novel microRNAs in Manduca sexta and their possible roles in the expression regulation of immunity-related genes. Insect Biochemistry and Molecular Biology, 2014, 47, 12-22.	1.2	50
47	A short-type peptidoglycan recognition protein from the silkworm: Expression, characterization and involvement in the prophenoloxidase activation pathway. Developmental and Comparative Immunology, 2014, 45, 1-9.	1.0	75
48	Semi-quantitative analysis of changes in the plasma peptidome of Manduca sexta larvae and their correlation with the transcriptome variations upon immune challenge. Insect Biochemistry and Molecular Biology, 2014, 47, 46-54.	1.2	30
49	Manduca sexta proprophenoloxidase activating proteinase-3 (PAP3) stimulates melanization by activating proPAP3, proSPHs, and proPOs. Insect Biochemistry and Molecular Biology, 2014, 50, 82-91.	1.2	47
50	Biochemical properties, expression profiles, and tissue localization ofÂorthologous acetylcholinesterase-2 in the mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2013, 43, 260-271.	1.2	13
51	A comprehensive analysis of the Manduca sexta immunotranscriptome. Developmental and Comparative Immunology, 2013, 39, 388-398.	1.0	52
52	Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases. Scientific Reports, 2013, 3, 1068.	1.6	29
53	Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum. Scientific Reports, 2012, 2, 288.	1.6	113
54	Identification and developmental profiling of conserved and novel microRNAs in Manduca sexta. Insect Biochemistry and Molecular Biology, 2012, 42, 381-395.	1.2	58

#	Article	IF	CITATIONS
55	Recognition of microbial molecular patterns and stimulation of prophenoloxidase activation by a \hat{l}^2 -1,3-glucanase-related protein in Manduca sexta larval plasma. Insect Biochemistry and Molecular Biology, 2011, 41, 322-331.	1.2	54
56	Antiviral, anti-parasitic, and cytotoxic effects of 5,6-dihydroxyindole (DHI), a reactive compound generated by phenoloxidase during insect immune response. Insect Biochemistry and Molecular Biology, 2011, 41, 645-652.	1.2	101
57	Pyrosequencing-based expression profiling and identification of differentially regulated genes from Manduca sexta, a lepidopteran model insect. Insect Biochemistry and Molecular Biology, 2011, 41, 733-746.	1.2	40
58	Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics, 2010, 11, 52.	1.2	178
59	Heterologous expression, purification, and biochemical characterization of a greenbug (<i>Schizaphis) Tj ETQq1 1 Biochemical and Molecular Toxicology, 2010, 24, 51-59.</i>	0.784314 1.4	1 rgBT /Ove 12
60	Proteolytic activation and function of the cytokine SpÃtele in the innate immune response of a lepidopteran insect, <i>Manducaâ€∫sexta</i> . FEBS Journal, 2010, 277, 148-162.	2.2	105
61	Immunity in Lepidopteran Insects. Advances in Experimental Medicine and Biology, 2010, 708, 181-204.	0.8	229
62	Involvement of Manduca sexta peptidoglycan recognition protein-1 in the recognition of bacteria and activation of prophenoloxidase system. Insect Biochemistry and Molecular Biology, 2010, 40, 487-495.	1.2	57
63	Binding properties of the regulatory domains in Manduca sexta hemolymph proteinase-14, an initiation enzyme of the prophenoloxidase activation system. Developmental and Comparative Immunology, 2010, 34, 316-322.	1.0	29
64	Functional analysis of four processing products from multiple precursors encoded by a lebocin-related gene from Manduca sexta. Developmental and Comparative Immunology, 2010, 34, 638-647.	1.0	29
65	Crystal structure of <i>Manduca sexta</i> prophenoloxidase provides insights into the mechanism of type 3 copper enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17002-17006.	3.3	159
66	Functions of Manduca sexta Hemolymph Proteinases HP6 and HP8 in Two Innate Immune Pathways. Journal of Biological Chemistry, 2009, 284, 19716-19726.	1.6	149
67	A comparative analysis of serpin genes in the silkworm genome. Genomics, 2009, 93, 367-375.	1.3	100
68	Recombinant expression and biochemical characterization of the catalytic domain of acetylcholinesterase-1 from the African malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2009, 39, 646-653.	1.2	24
69	Solution structure, antibacterial activity, and expression profile of <i>Manduca sexta</i> moricin. Journal of Peptide Science, 2008, 14, 855-863.	0.8	33
70	The biochemical basis of antimicrobial responses in <i>Manduca sexta</i> . Insect Science, 2008, 15, 53-66.	1.5	42
71	The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.	13.7	1,255
72	Expression of Manduca sexta serine proteinase homolog precursors in insect cells and their proteolytic activation. Insect Biochemistry and Molecular Biology, 2008, 38, 89-98.	1.2	46

#	Article	IF	CITATIONS
73	Pyrosequence analysis of expressed sequence tags for Manduca sexta hemolymph proteins involved in immune responses. Insect Biochemistry and Molecular Biology, 2008, 38, 677-682.	1.2	64
74	A positive feedback mechanism in the Manduca sexta prophenoloxidase activation system. Insect Biochemistry and Molecular Biology, 2008, 38, 763-769.	1.2	25
75	The Viral Protein Egf1.0 Is a Dual Activity Inhibitor of Prophenoloxidase-activating Proteinases 1 and 3 from Manduca sexta. Journal of Biological Chemistry, 2008, 283, 21325-21333.	1.6	71
76	Molecular Cloning and Characterizations of Manduca sexta SpÃæle, a possible ligand of Toll. FASEB Journal, 2008, 22, 820.4.	0.2	0
77	Manduca sexta Hemolymph Proteinase 21 Activates Prophenoloxidase-activating Proteinase 3 in an Insect Innate Immune Response Proteinase Cascade. Journal of Biological Chemistry, 2007, 282, 11742-11749.	1.6	104
78	Proteolytic activation of pro-spÃtzle is required for the induced transcription of antimicrobial peptide genes in lepidopteran insects. Developmental and Comparative Immunology, 2007, 31, 1002-1012.	1.0	57
79	Regulation of phenoloxidase activity by high- and low-molecular-weight inhibitors from the larval hemolymph of Manduca sexta. Insect Biochemistry and Molecular Biology, 2007, 37, 478-485.	1.2	33
80	Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochemistry and Molecular Biology, 2007, 37, 952-959.	1.2	160
81	Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro: Snake-like hemolymph proteinase 21 (HP21) cleaved by HP14 activates prophenoloxidase-activating proteinase-2 precursor. Insect Biochemistry and Molecular Biology, 2007, 37, 1015-1025.	1.2	80
82	Comparative genomic analysis of the Tribolium immune system. Genome Biology, 2007, 8, R177.	13.9	271
83	The Solution Structure of Clip Domains from <i>Manduca sexta </i> Prophenoloxidase Activating Proteinase-2. Biochemistry, 2007, 46, 11431-11439.	1.2	32
84	Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes. Science, 2007, 316, 1738-1743.	6.0	550
85	Manduca sexta hemolymph protease HP6 functions in innate immune responses. FASEB Journal, 2007, 21, A649.	0.2	0
86	Immune challenge induces N-terminal cleavage of the Drosophila serpin Necrotic. Insect Biochemistry and Molecular Biology, 2006, 36, 37-46.	1.2	23
87	An expansion of the dual clip-domain serine proteinase family in Manduca sexta: Gene organization, expression, and evolution of prophenoloxidase-activating proteinase-2, hemolymph proteinase 12, and other related proteinases. Genomics, 2006, 87, 399-409.	1.3	17
88	Comparative analysis of serine protease-related genes in the honey bee genome: possible involvement in embryonic development and innate immunity. Insect Molecular Biology, 2006, 15, 603-614.	1.0	170
89	Interaction of \hat{l}^2 -1,3-Glucan with Its Recognition Protein Activates Hemolymph Proteinase 14, an Initiation Enzyme of the Prophenoloxidase Activation System in Manduca sexta. Journal of Biological Chemistry, 2006, 281, 9271-9278.	1.6	98
90	Identification of Plasma Proteases Inhibited by Manduca sexta Serpin-4 and Serpin-5 and Their Association with Components of the Prophenol Oxidase Activation Pathway. Journal of Biological Chemistry, 2005, 280, 14932-14942.	1.6	115

#	Article	IF	CITATIONS
91	Manduca sexta Serpin-6 Regulates Immune Serine Proteinases PAP-3 and HP8. Journal of Biological Chemistry, 2005, 280, 14341-14348.	1.6	95
92	Manduca sexta prophenoloxidase (proPO) activation requires proPO-activating proteinase (PAP) and serine proteinase homologs (SPHs) simultaneously. Insect Biochemistry and Molecular Biology, 2005, 35, 241-248.	1.2	102
93	Manduca sexta prophenoloxidase activating proteinase-1 (PAP-1) gene: Organization, expression, and regulation by immune and hormonal signals. Insect Biochemistry and Molecular Biology, 2005, 35, 627-636.	1.2	40
94	Molecular identification of a bevy of serine proteinases in Manduca sexta hemolymph. Insect Biochemistry and Molecular Biology, 2005, 35, 931-943.	1.2	72
95	DaTrypsin, a novel clip-domain serine proteinase gene up-regulated during winter and summer diapauses of the onion maggot, Delia antiqua. Gene, 2005, 347, 115-123.	1.0	39
96	Purification and characterization of Manduca sexta prophenoloxidase-activating proteinase-1, an enzyme involved in insect immune responses. Protein Expression and Purification, 2005, 39, 261-268.	0.6	25
97	A Pattern Recognition Serine Proteinase Triggers the Prophenoloxidase Activation Cascade in the Tobacco Hornworm, Manduca sexta. Journal of Biological Chemistry, 2004, 279, 34101-34106.	1.6	68
98	Innate immune responses of a lepidopteran insect, Manduca sexta. Immunological Reviews, 2004, 198, 97-105.	2.8	599
99	Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochemistry and Molecular Biology, 2004, 34, 29-41.	1.2	162
100	\hat{l}^2 -1,3-Glucan recognition protein-2 (\hat{l}^2 GRP-2) from Manduca sexta: an acute-phase protein that binds \hat{l}^2 -1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. Insect Biochemistry and Molecular Biology, 2004, 34, 89-100.	1.2	120
101	Purification and characterization of Manduca sexta serpin-6: a serine proteinase inhibitor that selectively inhibits prophenoloxidase-activating proteinase-3. Insect Biochemistry and Molecular Biology, 2004, 34, 387-395.	1.2	66
102	Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochemistry and Molecular Biology, 2004, 34, 477-483.	1.2	85
103	Prophenoloxidase (proPO) activation in Manduca sexta: an analysis of molecular interactions among proPO, proPO-activating proteinase-3, and a cofactor. Insect Biochemistry and Molecular Biology, 2004, 34, 731-742.	1.2	71
104	Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene, 2003, 304, 117-131.	1.0	297
105	Expression and in vitro activation of Manduca sexta prophenoloxidase-activating proteinase-2 precursor (proPAP-2) from baculovirus-infected insect cells. Protein Expression and Purification, 2003, 29, 235-243.	0.6	30
106	Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 2003, 33, 197-208.	1.2	220
107	Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph: a clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochemistry and Molecular Biology, 2003, 33, 1049-1060.	1.2	201
108	Prophenoloxidase-activating Proteinase-2 from Hemolymph of Manduca sexta. Journal of Biological Chemistry, 2003, 278, 3552-3561.	1.6	194

#	Article	IF	CITATIONS
109	Manduca sexta Serpin-3 Regulates Prophenoloxidase Activation in Response to Infection by Inhibiting Prophenoloxidase-activating Proteinases. Journal of Biological Chemistry, 2003, 278, 46556-46564.	1.6	161
110	A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO Journal, 2002, 21, 6330-6337.	3.5	244
111	Expression and Purification of Manduca sexta Prophenoloxidase-Activating Proteinase Precursor (proPAP) from Baculovirus-Infected Insect Cells. Protein Expression and Purification, 2001, 23, 328-337.	0.6	28
112	A bacteria-induced, intracellular serpin in granular hemocytes of Manduca sexta. Insect Biochemistry and Molecular Biology, 2001, 31, 887-898.	1.2	49
113	Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 2001, 57, 385-392.	1.0	193
114	Proteolytic Activation of Prophenoloxidase in an Insect Manduca Sexta. Advances in Experimental Medicine and Biology, 2001, 484, 313-317.	0.8	11
115	Hemolymph Proteinases in Immune Responses of Manduca sexta. Advances in Experimental Medicine and Biology, 2001, 484, 319-328.	0.8	50
116	The clip-domain family of serine proteinases in arthropods. Insect Biochemistry and Molecular Biology, 2000, 30, 95-105.	1.2	358
117	The structure of active serpin 1K from Manduca sexta. Structure, 1999, 7, 103-109.	1.6	71
118	Biological activity of Manduca sexta paralytic and plasmatocyte spreading peptide and primary structure of its hemolymph precursor. Insect Biochemistry and Molecular Biology, 1999, 29, 1075-1086.	1.2	77
119	Characterization and Functional Analysis of 12 Naturally Occurring Reactive Site Variants of Serpin-1 from Manduca sexta. Journal of Biological Chemistry, 1997, 272, 1082-1087.	1.6	132
120	Molecular cloning of cDNAs for two pro-phenol oxidase subunits from the malaria vector, Anopheles gambiae1The sequences have been deposited in GenBank under accession numbers AF004915 and AF004916.1. Insect Biochemistry and Molecular Biology, 1997, 27, 693-699.	1.2	50
121	Subunit Composition of Pro-phenol Oxidase from Manduca sexta: Molecular Cloning of Subunit ProPO-p1. Insect Biochemistry and Molecular Biology, 1997, 27, 835-850.	1.2	156
122	Organization of Serpin Gene-1 from Manduca sexta. Journal of Biological Chemistry, 1996, 271, 28017-28023.	1.6	82
123	CHAPTER 15. Structure and Function of Stress-Responsive Peptides in Insects. RSC Drug Discovery Series, 0, , 438-451.	0.2	8
124	Nitric Oxide-Induced Calcineurin A Mediates Antimicrobial Peptide Production Through the IMD Pathway. Frontiers in Immunology, 0, 13 , .	2.2	5