Isabelle Berbezier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC. ACS Nano, 2022, 16, 5920-5931.	7.3	16
2	Local defect-free elastic strain relaxation of Si1-xGex embedded into SiO2. Applied Surface Science, 2022, 590, 153015.	3.1	2
3	Spontaneous shape transition of MnxGe1â^'x islands to long nanowires. Beilstein Journal of Nanotechnology, 2021, 12, 366-374.	1.5	1
4	Fabrication of MIS photodetector with Ge nanocrystals grown by MBE. Journal of Materials Science: Materials in Electronics, 2021, 32, 16800-16810.	1.1	5
5	Hydrogen-Mediated CVD Epitaxy of Graphene on SiC: Implications for Microelectronic Applications. ACS Applied Nano Materials, 2021, 4, 4462-4473.	2.4	7
6	New Strategies for Engineering Tensile Strained Si Layers for Novel n-Type MOSFET. ACS Applied Materials & Interfaces, 2021, 13, 1807-1817.	4.0	4
7	High graphene permeability for room temperature silicon deposition: The role of defects. Carbon, 2020, 158, 631-641.	5.4	9
8	Flexible photonic devices based on dielectric antennas. JPhys Photonics, 2020, 2, 015002.	2.2	10
9	Efficiency improvement of GaAs Quantum Dot in GaAs1-xPx matrix for solar cell applications. Microelectronics Journal, 2020, 99, 104738.	1.1	2
10	The potentially crucial role of quasi-particle interferences for the growth of silicene on graphite. Nano Research, 2020, 13, 2378-2383.	5.8	6
11	Raman microscopy and infrared optical properties of SiGe Mie resonators formed on SiO2 via Ge condensation and solid state dewetting. Nanotechnology, 2020, 31, 195602.	1.3	11
12	Fabrication of spectrally sharp Si-based dielectric resonators: combining etaloning with Mie resonances. Optics Express, 2020, 28, 37734.	1.7	12
13	Nanoâ€Structures and Nanomaterials Selfâ€Assembly. Physica Status Solidi (B): Basic Research, 2019, 256, 1900345.	0.7	0
14	Large Scale Self-Organization of 2D Hexagonal Ge and Au Nanodots on Patterned TiO2 for Optoelectronic Applications. ACS Applied Nano Materials, 2019, 2, 2026-2035.	2.4	8
15	Role of surface passivation on visible and infrared emission of Ge quantum dots formed by dewetting. Bulletin of Materials Science, 2019, 42, 1.	0.8	1
16	Capillary-driven elastic attraction between quantum dots. Nanoscale, 2019, 11, 7798-7804.	2.8	12
17	Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature. Nanoscale, 2019, 11, 6145-6152.	2.8	14
18	Silicene Nanostructures Grown on Graphene Covered SiC (0001) Substrate. International Journal of Nanoscience, 2019, 18, 1940039	0.4	2

#	Article	IF	CITATIONS
19	Templated dewetting of single-crystal sub-millimeter-long nanowires and on-chip silicon circuits. Nature Communications, 2019, 10, 5632.	5.8	33
20	Influence of ion species of AuSi liquid metal alloy source-focused ion beam on SiO2/Si nanopatterning. Thin Solid Films, 2019, 669, 215-219.	0.8	0
21	Optimization of structural and optical properties of nanoporous silicon substrate for thin layer transfer application. Journal of Materials Science: Materials in Electronics, 2019, 30, 2585-2591.	1.1	1
22	Self-organization of SiGe planar nanowires via anisotropic elastic field. Physical Review Materials, 2019, 3, .	0.9	7
23	Deterministic three-dimensional self-assembly of Si through a rimless and topology-preserving dewetting regime. Physical Review Materials, 2019, 3, .	0.9	2
24	New strategies for producing defect free SiGe strained nanolayers. Scientific Reports, 2018, 8, 2891.	1.6	30
25	Solid-state dewetting of single-crystal silicon on insulator: effect of annealing temperature and patch size. Microelectronic Engineering, 2018, 190, 1-6.	1.1	12
26	Charge trapping properties of Ge nanocrystals grown via solid-state dewetting. Journal of Alloys and Compounds, 2018, 756, 139-144.	2.8	0
27	Modeling and optimization of core (p-GaN)-multishell (i-InxGa1-xN/i-GaN/n-Al0.1Ga0.9N /n-GaN) nanowire for photovoltaic applications. Superlattices and Microstructures, 2018, 120, 209-216.	1.4	2
28	Direct-Gap Photoluminescence from a Si-Ge Multilayer Super Unit Cell Grown on Si _{0.4} Ge _{0.6} . ECS Journal of Solid State Science and Technology, 2018, 7, R115-R119.	0.9	0
29	Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Research, 2018, 11, 5879-5889.	5.8	21
30	Self-assembled antireflection coatings for light trapping based on SiGe random metasurfaces. Physical Review Materials, 2018, 2, .	0.9	13
31	Fabrication and characterization of magnetic porous silicon with curie temperature above room temperature. Journal of Porous Materials, 2017, 24, 1139-1144.	1.3	3
32	Red-luminescence band: A tool for the quality assessment of germanium and silicon nanocrystals. Applied Surface Science, 2017, 419, 476-483.	3.1	5
33	All-Dielectric Color Filters Using SiGe-Based Mie Resonator Arrays. ACS Photonics, 2017, 4, 873-883.	3.2	75
34	Modeling and optimization of core/shell p-i-n Si/Si0.2Ge0.8 nanowire for photovoltaic. Optik, 2017, 149, 246-251.	1.4	1
35	Analysis of composition and microstructures of Ge grown on porous silicon using Raman spectroscopy and transmission electron microscopy. Superlattices and Microstructures, 2017, 112, 493-498.	1.4	4
36	Contacting of Si/SiO 2 core/shell nanowires using laser photolithography. Energy Procedia, 2017, 119, 131-138.	1.8	0

#	Article	IF	CITATIONS
37	Tailoring Strain and Morphology of Core–Shell SiGe Nanowires by Low-Temperature Ge Condensation. Nano Letters, 2017, 17, 7299-7305.	4.5	13
38	Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures. Science Advances, 2017, 3, eaao1472.	4.7	74
39	"Black―Titania Coatings Composed of Sol–Gel Imprinted Mie Resonators Arrays. Advanced Functional Materials, 2017, 27, 1604924.	7.8	28
40	Nucleation versus instability race in strained films. Physical Review Materials, 2017, 1, .	0.9	15
41	Geometrically induced electron-electron interaction in semiconductor nanowires. Applied Physics Letters, 2016, 109, .	1.5	20
42	Nanocrystals: Templated Solid-State Dewetting of Thin Silicon Films (Small 44/2016). Small, 2016, 12, 6114-6114.	5.2	1
43	van der Waals Heteroepitaxy of Germanene Islands on Graphite. Journal of Physical Chemistry Letters, 2016, 7, 3246-3251.	2.1	42
44	Remarkable Strength Characteristics of Defect-Free SiGe/Si Heterostructures Obtained by Ge Condensation. Journal of Physical Chemistry C, 2016, 120, 20333-20340.	1.5	7
45	Templated Solidâ€State Dewetting of Thin Silicon Films. Small, 2016, 12, 6115-6123.	5.2	24
46	Formation of Silicene Nanosheets on Graphite. ACS Nano, 2016, 10, 11163-11171.	7.3	84
47	Fabrication of core–shell nanostructures via silicon on insulator dewetting and germanium condensation: towards a strain tuning method for SiGe-based heterostructures in a three-dimensional geometry. Nanotechnology, 2016, 27, 305602.	1.3	17
48	Supersaturation state effect in diffusion induced Ge nanowires growth at high temperatures. Journal of Crystal Growth, 2016, 436, 51-55.	0.7	6
49	Fabrication of poly-crystalline Si-based Mie resonators via amorphous Si on SiO ₂ dewetting. Nanoscale, 2016, 8, 2844-2849.	2.8	27
50	Self-assembly of nanostructures and nanomaterials. Beilstein Journal of Nanotechnology, 2015, 6, 1397-1398.	1.5	13
51	Configurable Compliant Substrates for SiGe Nanomembrane Fabrication. Crystal Growth and Design, 2015, 15, 3399-3406.	1.4	15
52	Kinetics and Energetics of Ge Condensation in SiGe Oxidation. Journal of Physical Chemistry C, 2015, 119, 24606-24613.	1.5	33
53	Ordered arrays of Au catalysts by FIB assisted heterogeneous dewetting. Nanotechnology, 2015, 26, 505602.	1.3	13
54	Si/Ge intermixing during Ge Stranski–Krastanov growth. Beilstein Journal of Nanotechnology, 2014, 5, 2374-2382.	1.5	9

#	Article	IF	CITATIONS
55	Bright photoluminescence from ordered arrays of SiGe nanowires grown on Si(111). Beilstein Journal of Nanotechnology, 2014, 5, 2498-2504.	1.5	4
56	Role of quantum confinement in luminescence efficiency of group IV nanostructures. Journal of Applied Physics, 2014, 115, .	1.1	22
57	Wafer Scale Formation of Monocrystalline Silicon-Based Mie Resonators <i>via</i> Silicon-on-Insulator Dewetting. ACS Nano, 2014, 8, 11181-11190.	7.3	89
58	Diffusion induced effects on geometry of Ge nanowires. Nanoscale, 2014, 6, 7469-7473.	2.8	9
59	Accommodation of SiGe strain on a universally compliant porous silicon substrate. Physical Review B, 2014, 90, .	1.1	21
60	Selective growth and ordering of SiGe nanowires for band gap engineering. Nanotechnology, 2014, 25, 335303.	1.3	5
61	Investigation of microstructure and morphology for the Ge on porous silicon/Si substrate hetero-structure obtained by molecular beam epitaxy. Thin Solid Films, 2014, 550, 233-238.	0.8	11
62	Growth and self-organization of SiGe nanostructures. Physics Reports, 2013, 522, 59-189.	10.3	180
63	Ultimate nanopatterning of Si substrate using filtered liquid metal alloy ion source-focused ion beam. Thin Solid Films, 2013, 543, 69-73.	0.8	12
64	Interrupted Self-Organization of SiGe Pyramids. Physical Review Letters, 2013, 110, 096101.	2.9	25
65	Nano-structuring in SiGe by oxidation induced anisotropic Ge self-organization. Journal of Applied Physics, 2013, 113, 104310.	1.1	11
66	Probing local strain and composition in Ge nanowires by means of tip-enhanced Raman scattering. Nanotechnology, 2013, 24, 185704.	1.3	21
67	Electroless selective deposition of gold nano-array for silicon nanowires growth. Nanofabrication, 2013, 1, 1-7.	1.1	1
68	(Invited) Photoluminescence Efficiency of Germanium Dots Self-Assembled on Oxides. ECS Transactions, 2013, 53, 185-206.	0.3	11
69	Ordered arrays of Si and Ge nanocrystals via dewetting of pre-patterned thin films. Journal of Applied Physics, 2013, 113, .	1.1	24
70	Engineered core-shell Si1â^'xGex/Ge nanowires fabricated by focused ion beam and oxido-reduction. Journal of Applied Physics, 2013, 114, .	1.1	7
71	The kinetics of dewetting ultra-thin Si layers from silicon dioxide. New Journal of Physics, 2012, 14, 063038.	1.2	39
72	Ferromagnetic Mn-doped Si0.3Ge0.7nanodots self-assembled on Si(100). Journal of Physics Condensed Matter, 2012, 24, 142203.	0.7	6

#	Article	IF	CITATIONS
73	Ge atom distribution in buried dome islands. Applied Physics Letters, 2012, 100, 164105.	1.5	8
74	Nano-electron beam induced current and hole charge dynamics through uncapped Ge nanocrystals. Applied Physics Letters, 2012, 100, .	1.5	8
75	Design of free patterns of nanocrystals with ad hoc features via templated dewetting. Applied Physics Letters, 2012, 101, .	1.5	30
76	Ultra-thin planar fully relaxed Ge pseudo-substrate on compliant porous silicon template layer. Applied Physics Letters, 2012, 101, 233105.	1.5	20
77	In-Plane Epitaxial Growth of Self-Assembled Ge Nanowires on Si Substrates Patterned by a Focused Ion Beam. Crystal Growth and Design, 2011, 11, 3190-3197.	1.4	20
78	On Morphology and Strain Field of Ge/Si(001) Islands According to TEM Phase Imaging Method. Journal of Nanoscience and Nanotechnology, 2011, 11, 9208-9214.	0.9	4
79	Selected Peer-Reviewed Articles from the Third International Conference on Nanostructures Self-Assembly (NANOSEA 2010). Journal of Nanoscience and Nanotechnology, 2011, 11, 9078-9079.	0.9	Ο
80	Photocurrent Generation in Ge Nanocrystal/Si Systems. Journal of Nanoscience and Nanotechnology, 2011, 11, 9227-9231.	0.9	1
81	Vapor–solid–solid growth of Ge nanowires from GeMn solid cluster seeds. Surface Science, 2011, 605, 7-11.	0.8	10
82	Mn5Ge3 films grown on Ge(1 1 1)-c(2×8). Surface Science, 2011, 605, 638-643.	0.8	28
83	Orientation dependence of the elastic instability on strained SiGe films. Applied Physics Letters, 2011, 98, .	1.5	19
84	Photoluminescence Efficiency and Size Distribution of Self Assembled Ge Dots on Porous TiO ₂ . Journal of Nanoscience and Nanotechnology, 2011, 11, 9190-9195.	0.9	7
85	Predicting Size Distributions of Ge Nanodots from Their Photoluminescence. Journal of the Electrochemical Society, 2010, 157, H1160.	1.3	8
86	Insights into solid phase epitaxy of ultrahighly doped silicon. Journal of Applied Physics, 2010, 108, .	1.1	4
87	Conductive AFM microscopy study of the carrier transport and storage in Ge nanocrystals grown by dewetting. Nanotechnology, 2010, 21, 065706.	1.3	20
88	Strain engineered segregation regimes for the fabrication of thin Silâ^'xGex layers with abrupt n-type doping. Journal of Applied Physics, 2010, 107, .	1.1	11
89	Photoresponse induced by Ge nanodots on SiO2/Si substrate. Journal of Non-Crystalline Solids, 2010, 356, 1940-1942.	1.5	3
90	Photoluminescence Efficiency of Self-Assembled Ge Nanocrystals. Journal of the Electrochemical Society, 2009, 156, H913.	1.3	11

#	Article	IF	CITATIONS
91	Title is missing!. Materials Science in Semiconductor Processing, 2009, 12, 1.	1.9	0
92	SiGe nanostructures. Surface Science Reports, 2009, 64, 47-98.	3.8	125
93	Photoluminescence of Ge nanocrystals self-assembled on SiO2. Superlattices and Microstructures, 2008, 44, 305-314.	1.4	13
94	Photocurrent generation from Ge nanodots in the near UV and visible region. Superlattices and Microstructures, 2008, 44, 331-336.	1.4	2
95	Raman measurements of Ge1â^'xMnx epilayers. Superlattices and Microstructures, 2008, 44, 315-322.	1.4	2
96	Nanoscale self-assembly and patterning. Superlattices and Microstructures, 2008, 44, 303-304.	1.4	0
97	Si/SiGe heterostructures for advanced microelectronic devices. Phase Transitions, 2008, 81, 751-772.	0.6	3
98	display="inline">< mml:mrow>< mml:msub>< mml:mi mathvariant="normal">Mn< mml:mn>0.06< mml:msub>< mml:mi mathvariant="normal">Ge< mml:mn>0.94diluted	1.1	44
99	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:msub> <mml:mi Self-assembly and ordering mechanisms of Ge islands on prepatterned Si(001). Physical Review B, 2008, 77, .</mml:mi </mml:msub></mml:mrow>	1.1	46
100	Memory and Coulomb blockade effects in germanium nanocrystals embedded in amorphous silicon on silicon dioxide. Journal of Applied Physics, 2007, 102, .	1.1	11
101	Morphological and structural evolutions of diluted Ge1â^'xMnx epitaxial films. Applied Physics Letters, 2007, 91, 141920.	1.5	27
102	Self-assembling of Ge dots on nanopatterns: Experimental investigation of their formation, evolution and control. Physical Review B, 2007, 75, .	1.1	35
103	Influence of patterning on the nucleation of Ge islands on Si and SiO2 surfaces. Surface Science, 2007, 601, 2778-2782.	0.8	17
104	Optoelectronic properties in quantum-confined germanium dots. Applied Physics Letters, 2007, 91, 141117.	1.5	23
105	Early stage of Ge growth on Si(001) vicinal surfaces with an 8° miscut along[110]. Physical Review B, 2007, 75, .	1.1	36
106	MnxGe1â°'x thin layers studied by TEM, X-ray absorption spectroscopy and SQUID magnetometry. Surface Science, 2007, 601, 2628-2631.	0.8	15
107	Structural, magnetic and electronic transport properties of MnxGe1â^'x/Ge(001) films grown by MBE at 350°C. Surface Science, 2007, 601, 2632-2635.	0.8	9
108	Ordering of Ge nanocrystals using FIB nanolithography. Surface Science, 2007, 601, 2769-2773.	0.8	18

#	Article	IF	CITATIONS
109	Structural and magnetic properties of Mn5Ge3 nanoclusters dispersed in MnxGe1â^'x/Ge(001)2×1 diluted magnetic semiconductors. Surface Science, 2007, 601, 4370-4374.	0.8	4
110	Ge Quantum Dot Memory Structure with Laterally Ordered Highly Dense Arrays of Ge Dots. Journal of Nanoscience and Nanotechnology, 2007, 7, 316-321.	0.9	14
111	Ge quantum dot memory structure with laterally ordered highly dense arrays of Ge dots. Journal of Nanoscience and Nanotechnology, 2007, 7, 316-21.	0.9	3
112	Growth of ultrahigh-density quantum-confined germanium dots on SiO2 thin films. Applied Physics Letters, 2006, 89, 063122.	1.5	28
113	Structural and magnetic properties of GeMn diluted magnetic semiconductor. Materials Science in Semiconductor Processing, 2006, 9, 832-835.	1.9	6
114	Formation of Mn5Ge3 nanoclusters in highly diluted MnxGe1â^'x alloys. Materials Science in Semiconductor Processing, 2006, 9, 836-840.	1.9	12
115	Formation and ordering of Ge nanocrystals on SiO2 using FIB nanolithography. Materials Science in Semiconductor Processing, 2006, 9, 812-816.	1.9	7
116	Dopant Diffusion in Si _{1-x} Ge _x Thin Films: Effect of Epitaxial Stress. Defect and Diffusion Forum, 2006, 249, 135-142.	0.4	0
117	Self-organization of step bunching instability on vicinal substrate. Applied Physics Letters, 2006, 89, 104108.	1.5	17
118	Formation and ordering of Ge nanocrystals onSiO2. Physical Review B, 2006, 73, .	1.1	60
119	Influence of Si(001) substrate misorientation on morphological and optical properties of Ge quantum dots. Journal of Applied Physics, 2005, 98, 063517.	1.1	9
120	Effect of self-patterned Si[sub 1â^'x]Ge[sub x] template layer on the structural and optical properties of Ge dots. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 242.	1.6	8
121	Sb surface segregation during epitaxial growth of SiGe heterostructures: The effects of Ge composition and biaxial stress. Physical Review B, 2004, 69, .	1.1	20
122	Sb-surfactant-mediated growth of Si and Ge nanostructures. Physical Review B, 2004, 69, .	1.1	58
123	Lattice diffusion and surface segregation of B during growth of SiGe heterostructures by molecular beam epitaxy: Effect of Ge concentration and biaxial stress. Journal of Applied Physics, 2004, 96, 3158-3163.	1.1	12
124	Electrical study of MOS structure with Ge embedded in SiO2 as floating gate for nonvolatile memory. Superlattices and Microstructures, 2004, 36, 143-148.	1.4	11
125	Self-patterned Si surfaces as templates for Ge islands ordering. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 370-376.	1.3	30
126	Electrically active defects induced by sputtering deposition on silicon: The role of hydrogen. Journal of Applied Physics, 2004, 95, 4752-4760.	1.1	15

#	Article	IF	CITATIONS
127	Sb lattice diffusion inSi1â^'xGex/Si(001)heterostructures: Chemical and stress effects. Physical Review B, 2004, 69, .	1.1	22
128	Ge dot organization on Si substrates patterned by focused ion beam. Applied Physics Letters, 2004, 85, 6401-6403.	1.5	95
129	Morphological evolution of SiGe layers. Surface Science, 2003, 531, 231-243.	0.8	38
130	Experimental insights into Si and SiGe growth instabilities: Influence of kinetic growth parameters and substrate orientation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 95-101.	1.7	15
131	Effect of Sb on Si/Si and Ge/Si growth process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 181-185.	1.7	14
132	The effect of Sb on the oxidation of Ge quantum dots. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 190-193.	1.7	2
133	Hole trapping in self-assembled SiGe quantum nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 338-344.	1.7	6
134	Ge dots self-assembling: Surfactant mediated growth of Ge on SiGe (118) stress-induced kinetic instabilities. Applied Physics Letters, 2003, 83, 4833-4835.	1.5	39
135	Oxidation Of Si / nc-Ge / Si Heterostructures For Non Volatile Memory Applications. Materials Research Society Symposia Proceedings, 2003, 776, 11341.	0.1	3
136	SiGe nanostructures: new insights into growth processes. Journal of Physics Condensed Matter, 2002, 14, 8283-8331.	0.7	62
137	Sb-surfactant mediated growth of Ge nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 89, 205-210.	1.7	35
138	Auger spectroscopy thermodesorption of Sb on Silâ^'xGex layers grown on Si() substrates. Surface Science, 2002, 519, 185-191.	0.8	5
139	Structural, Compositional and Optical Properties of Self-Organised Ge Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 265-269.	0.7	10
140	Sb segregation in Si and SiGe: effect on the growth of self-organised Ge dots. Thin Solid Films, 2000, 380, 164-168.	0.8	34
141	Nucleation and evolution of Si1â^'xGex islands on Si(001). Thin Solid Films, 2000, 380, 46-50.	0.8	14
142	Fabrication of self-organised Ge dots using self-patterned SiGe template layer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 367-373.	1.7	10
143	Kinetic evolution of self-organised SiGe nanostructures. Applied Surface Science, 2000, 162-163, 576-583.	3.1	16
144	Self-limiting segregation and incorporation during boron doping of Si and SiGe. Semiconductor Science and Technology, 1999, 14, 198-206.	1.0	12

#	Article	IF	CITATIONS
145	Optical study of germanium nanostructures grown on a Si(118) vicinal substrate. Microelectronics Journal, 1999, 30, 357-362.	1.1	21
146	Influence of misfit and threading dislocations on the surface morphology of SiGe graded-layers. Journal of Crystal Growth, 1999, 201-202, 547-550.	0.7	27
147	Photoluminescence of Ge nanostructures grown by gas source molecular beam epitaxy on silicon (118) surface. Journal of Luminescence, 1998, 80, 515-518.	1.5	2
148	The influence of stress on growth instabilities on Si substrates. Thin Solid Films, 1998, 336, 124-129.	0.8	7
149	Self organization of Ge dots on Si substrates: influence of misorientation. Thin Solid Films, 1998, 336, 256-261.	0.8	17
150	Dependence of SiGe growth instability on Si substrate orientation. Surface Science, 1998, 412-413, 415-429.	0.8	29
151	Elastic Strain Relaxation in Si1-xGex Layers Epitaxially Grown on Si Substrates. Surface Review and Letters, 1998, 05, 133-138.	0.5	12
152	Defect-mediated kinetic roughening in low-temperature MBE growth of Si/Si (111). Europhysics Letters, 1998, 41, 519-524.	0.7	4
153	New insights on SiGe growth instabilities. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 1582.	1.6	25
154	Growth mechanisms of SiGe on (111) and (100) Si substrates. Thin Solid Films, 1997, 294, 22-26.	0.8	13
155	Homoepitaxy of silicon at low temperature on clean and Ga-covered substrates. Thin Solid Films, 1997, 294, 69-71.	0.8	7
156	Silicon homoepitaxy on high index surfaces and the effect of antimony on this growth. Surface Science, 1996, 352-354, 797-801.	0.8	9
157	Interface phase transition as observed in ultra thin FeSi2 epilayers. Applied Surface Science, 1996, 92, 311-320.	3.1	8
158	EELS investigation of luminescent nanoporous p-type silicon. Applied Surface Science, 1996, 102, 417-422.	3.1	29
159	Gallium-mediated homoepitaxial growth of silicon at low temperatures. Physical Review B, 1996, 54, 4919-4925.	1.1	9
160	Chemical beam epitaxy of iron disilicide on silicon. Journal of Crystal Growth, 1995, 146, 444-448.	0.7	3
161	Sub-micrometre luminescent porous silicon structures using lithographically patterned substrates. Thin Solid Films, 1995, 255, 329-333.	0.8	69
162	Growth of βâ€FeSi2on Si(111) by chemical beam epitaxy. Applied Physics Letters, 1994, 65, 1439-1441.	1.5	14

#	Article	IF	CITATIONS
163	Defect-free Stranski-Krastanov growth of strained Si1-xGex layers on Si. Journal of Crystal Growth, 1994, 142, 78-86.	0.7	42
164	High-resolution electron microscopy study of αî—,FeSi2 heteroepitaxy on Si(111). Surface Science, 1994, 315, 27-39.	0.8	30
165	Influence of kinetic roughening on the epitaxial growth of silicon. Journal De Physique, I, 1994, 4, 1309-1324.	1.2	15
166	Synthesis and properties of epitaxial semiconducting silicides. Applied Surface Science, 1993, 73, 90-101.	3.1	47
167	Porous silicon: material properties, visible photo- and electroluminescence. Applied Surface Science, 1993, 65-66, 394-407.	3.1	52
168	Growth of β-FeSi2 on silicon substrates by chemical beam epitaxy. Journal of Crystal Growth, 1993, 127, 158-164.	0.7	13
169	A microstructural study of porous silicon. Journal of Applied Physics, 1993, 74, 5421-5425.	1.1	83
170	Surface electronâ€diffraction patterns of βâ€FeSi2films epitaxially grown on silicon. Journal of Applied Physics, 1993, 74, 1747-1761.	1.1	78
171	Epitaxial orientation of Î2-FeSi2/Si heterojunctions obtained by RTP chemical vapor deposition. Microscopy Microanalysis Microstructures, 1993, 4, 5-21.	0.4	12
172	Selective and epitaxial deposition of βâ€FeSi2 on silicon by rapid thermal processingâ€chemical vapor deposition using a solid iron source. Applied Physics Letters, 1992, 60, 956-958.	1.5	52
173	Low temperature silicon and Si1â^'xGex epitaxy by rapid themal chemical vapour deposition using hydrides. Thin Solid Films, 1992, 222, 52-56.	0.8	44
174	Selective and epitaxial deposition of ?-FeSi2 onto silicon by RTP-CVD. Journal De Physique III, 1992, 2, 1445-1452.	0.3	2