Zhi-Hong Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830295/publications.pdf

Version: 2024-02-01

759233 677142 24 557 12 22 citations h-index g-index papers 24 24 24 480 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tailoring strength and ductility of high-entropy CrMnFeCoNi alloy by adding Al. Rare Metals, 2022, 41, 1015-1021.	7.1	27
2	Microstructure and compression properties of a dual-phase FeCoCrMn high-entropy alloy. Advanced Composites and Hybrid Materials, 2022, 5, 1508-1515.	21.1	10
3	Effects of hydrogen charging and deformation on tensile properties of a multi-component alloy for nuclear applications. Tungsten, 2022, 4, 212-218.	4.8	7
4	Microstructure and mechanical properties of spark plasma diffusion-bonded 5A06Al joints with Alâ€"20Cuâ€"5Siâ€"2Ni interlayer. International Journal of Advanced Manufacturing Technology, 2021, 114, 3627-3643.	3.0	0
5	Microstructure and mechanical properties of SiC ceramic joints vacuum brazed with in-situ formed SiC particulate reinforced Si–24Ti alloy. Vacuum, 2020, 173, 109160.	3.5	21
6	Microstructure Stability and Its Influence on the Mechanical Properties of CrMnFeCoNiAl0.25 High Entropy Alloy. Metals and Materials International, 2020, 26, 1192-1199.	3.4	22
7	Influence of Zn Content on Microstructures, Mechanical Properties and Stress Corrosion Behavior of AA5083 Aluminum Alloy. Acta Metallurgica Sinica (English Letters), 2020, 33, 1369-1378.	2.9	8
8	Microstructure and mechanical properties of W/steel joints diffusion bonded with Nb and Nb/Ni interlayers by spark plasma sintering. Journal of Adhesion Science and Technology, 2020, 34, 2638-2651.	2.6	10
9	A multi-phase CrMnFeCoNiAl0.75 high-entropy alloy with high strength at intermediate temperature. Intermetallics, 2020, 120, 106744.	3.9	28
10	On the use of Ti Si eutectic alloy as a novel sintering aid for B4C TiB2SiC ceramic composites. Ceramics International, 2019, 45, 12393-12398.	4.8	15
11	The Microstructure and Shear Strength of SiC Joints Brazed with SiC Particle Reinforced Si-24Ti Alloy. IOP Conference Series: Materials Science and Engineering, 2019, 678, 012050.	0.6	O
12	Beneficial effects of B4C addition on the microstructure and mechanical properties of SiC ceramic joints diffusion bonded with Ti3SiC2. Materials Science & Department A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 169-178.	5.6	7
13	Effect of adding of SiC particulate on the microstructure and shear strength of SiC ceramic joint brazed with Si-24Ti alloy. Journal of Adhesion Science and Technology, 2018, 32, 2041-2053.	2.6	8
14	Precipitation and its strengthening of Cu-rich phase in CrMnFeCoNiCux high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 134-140.	5.6	99
15	Micro-alloying effects of yttrium on the microstructure and strength of silicon carbide joint brazed with chromium-silicon eutectic alloy. Journal of Alloys and Compounds, 2018, 738, 354-362.	5. 5	14
16	Interfacial microstructure evolution and mechanical properties of B4C-based composite joints bonded with Ti foil. Ceramics International, 2018, 44, 18016-18024.	4.8	2
17	Microstructure and mechanical properties of SiC joint with an in-situ formed SiC-TiB2 composite interlayer. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 735, 104-113.	5.6	5
18	In-situ formation of fine-grained carbide composite interlayer during diffusion bonding of SiC ceramic. Journal of Alloys and Compounds, 2018, 763, 875-882.	5.5	10

#	Article	IF	CITATION
19	Tailoring the interfacial microstructure and mechanical strength of SiC ceramic joints using joining temperature and interlayer thickness. Materials Characterization, 2018, 142, 470-477.	4.4	6
20	A high-entropy V 35 Ti 35 Fe 15 Cr 10 Zr 5 alloy with excellent high-temperature strength. Materials and Design, 2017, 121, 229-236.	7.0	61
21	High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 701, 338-343.	5.6	34
22	Microstructural stability and mechanical properties of a newly developed Ni–Fe-base superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 101-107.	5.6	50
23	Tensile Properties and Deformation Characteristics of a Ni-Fe-Base Superalloy for Steam Boiler Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 343-350.	2.2	30
24	Microstructure and mechanical properties of diffusion bonded joints between tungsten and F82H steel using a titanium interlayer. Journal of Alloys and Compounds, 2010, 489, 545-551.	5.5	83