

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830195/publications.pdf Version: 2024-02-01

		24978	32761
206	11,719	57	100
papers	citations	h-index	g-index
211	211	211	16321
all docs	docs citations	times ranked	citing authors

LEI FU

#	Article	IF	CITATIONS
1	Synthesis of Nitrogenâ€Doped Graphene Using Embedded Carbon and Nitrogen Sources. Advanced Materials, 2011, 23, 1020-1024.	11.1	735
2	Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chemical Reviews, 2018, 118, 6236-6296.	23.0	410
3	Applications of Phosphorene and Black Phosphorus in Energy Conversion and Storage Devices. Advanced Energy Materials, 2018, 8, 1702093.	10.2	385
4	Beaded Cobalt Oxide Nanoparticles along Carbon Nanotubes: Towards More Highly Integrated Electronic Devices. Advanced Materials, 2005, 17, 217-221.	11.1	342
5	Opening Twoâ€Dimensional Materials for Energy Conversion and Storage: A Concept. Advanced Energy Materials, 2017, 7, 1602684.	10.2	304
6	Universal Segregation Growth Approach to Wafer-Size Graphene from Non-Noble Metals. Nano Letters, 2011, 11, 297-303.	4.5	239
7	Emerging two-dimensional nanomaterials for electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 8187-8208.	5.2	229
8	Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nature Communications, 2011, 2, 522.	5.8	223
9	The origin of wrinkles on transferred graphene. Nano Research, 2011, 4, 996-1004.	5.8	211
10	Extremely Weak van der Waals Coupling in Vertical ReS ₂ Nanowalls for Highâ€Currentâ€Density Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 2616-2623.	11.1	204
11	Engineering 2D Architectures toward Highâ€Performance Microâ€Supercapacitors. Advanced Materials, 2019, 31, e1802793.	11.1	202
12	Segregation Growth of Graphene on Cu–Ni Alloy for Precise Layer Control. Journal of Physical Chemistry C, 2011, 115, 11976-11982.	1.5	188
13	Growth of 2D GaN Single Crystals on Liquid Metals. Journal of the American Chemical Society, 2018, 140, 16392-16395.	6.6	183
14	Designed CVD Growth of Graphene via Process Engineering. Accounts of Chemical Research, 2013, 46, 2263-2274.	7.6	172
15	Phase Engineering of Highâ€Entropy Alloys. Advanced Materials, 2020, 32, e1907226.	11.1	154
16	NiFe LDH nanodots anchored on 3D macro/mesoporous carbon as a high-performance ORR/OER bifunctional electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 14299-14306.	5.2	147
17	Wrinkle Engineering: A New Approach to Massive Graphene Nanoribbon Arrays. Journal of the American Chemical Society, 2011, 133, 17578-17581.	6.6	142
18	Direct Growth of MoS ₂ /h-BN Heterostructures <i>via</i> a Sulfide-Resistant Alloy. ACS Nano, 2016, 10, 2063-2070.	7.3	139

#	Article	IF	CITATIONS
19	2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction. Nano Energy, 2017, 33, 356-362.	8.2	137
20	Coating Carbon Nanotubes with Rare Earth Oxide Multiwalled Nanotubes. Advanced Materials, 2004, 16, 350-352.	11.1	133
21	Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials. Journal Physics D: Applied Physics, 2017, 50, 074002.	1.3	125
22	Twinned growth behaviour of two-dimensional materials. Nature Communications, 2016, 7, 13911.	5.8	123
23	Ultrasensitive SERS performance in 3D "sunflower-like―nanoarrays decorated with Ag nanoparticles. Nanoscale, 2017, 9, 3114-3120.	2.8	118
24	CVD Growth of Large Area Smooth-edged Graphene Nanomesh by Nanosphere Lithography. Scientific Reports, 2013, 3, 1238.	1.6	111
25	Efficient Synthesis of Carbon Nanotube–Nanoparticle Hybrids. Advanced Functional Materials, 2006, 16, 2431-2437.	7.8	110
26	Self-Assembled Growth of ZnS Nanobelt Networks. Journal of Physical Chemistry B, 2004, 108, 936-938.	1.2	109
27	High-Performance Single CdS Nanowire (Nanobelt) Schottky Junction Solar Cells with Au/Graphene Schottky Electrodes. ACS Applied Materials & Interfaces, 2010, 2, 3406-3410.	4.0	108
28	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO _x by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.	7.3	108
29	Phase engineering of two-dimensional transition metal dichalcogenides. Science China Materials, 2019, 62, 759-775.	3.5	106
30	Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15641-15646.	3.3	100
31	Nanometric Ni ₅ P ₄ Clusters Nested on NiCo ₂ O ₄ for Efficient Hydrogen Production via Alkaline Water Electrolysis. Advanced Energy Materials, 2018, 8, 1801690.	10.2	99
32	Surface Chemistry of Gallium-Based Liquid Metals. Matter, 2020, 3, 1477-1506.	5.0	98
33	Van der Waals Epitaxial Growth of Atomic Layered HfS ₂ Crystals for Ultrasensitive Nearâ€Infrared Phototransistors. Advanced Materials, 2017, 29, 1700439.	11.1	96
34	Graphene transfer methods: A review. Nano Research, 2021, 14, 3756-3772.	5.8	95
35	A New Method to Synthesize Complicated Multibranched Carbon Nanotubes with Controlled Architecture and Composition. Nano Letters, 2006, 6, 186-192.	4.5	93
36	Direct Growth of Ultrafast Transparent Single-Layer Graphene Defoggers. Small, 2015, 11, 1840-1846.	5.2	92

#	Article	IF	CITATIONS
37	Ga2O3Nanoribbons:Â Synthesis, Characterization, and Electronic Properties. Chemistry of Materials, 2003, 15, 4287-4291.	3.2	91
38	High-quality single-layer graphene via reparative reduction of graphene oxide. Nano Research, 2011, 4, 434-439.	5.8	91
39	Highly Efficient Photocatalytic Hydrogen Evolution by ReS ₂ via a Twoâ€Electron Catalytic Reaction. Advanced Materials, 2018, 30, e1707123.	11.1	90
40	Self-Assembly of Graphene Single Crystals with Uniform Size and Orientation: The First 2D Super-Ordered Structure. Journal of the American Chemical Society, 2016, 138, 7812-7815.	6.6	88
41	Controllable Coâ€segregation Synthesis of Waferâ€Scale Hexagonal Boron Nitride Thin Films. Advanced Materials, 2014, 26, 1776-1781.	11.1	87
42	Supercritical Carbon Dioxide Anchored Fe ₃ O ₄ Nanoparticles on Graphene Foam and Lithium Battery Performance. ACS Applied Materials & Interfaces, 2014, 6, 22527-22533.	4.0	86
43	Liquid Metal: An Innovative Solution to Uniform Graphene Films. Chemistry of Materials, 2014, 26, 3637-3643.	3.2	86
44	Carbide-Forming Groups IVB-VIB Metals: A New Territory in the Periodic Table for CVD Growth of Graphene. Nano Letters, 2014, 14, 3832-3839.	4.5	84
45	Controllable Chemical Vapor Deposition Growth of Two-Dimensional Heterostructures. CheM, 2018, 4, 671-689.	5.8	84
46	Facile Route to Synthesize Multiwalled Carbon Nanotube/Zinc Sulfide Heterostructures:  Optical and Electrical Properties. Journal of Physical Chemistry B, 2005, 109, 12772-12776.	1.2	81
47	Epitaxial Single‣ayer MoS ₂ on GaN with Enhanced Valley Helicity. Advanced Materials, 2018, 30, 1703888.	11.1	80
48	Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nature Materials, 2020, 19, 528-533.	13.3	80
49	Interconnected MnO2 nanoflakes assembled on graphene foam as a binder-free and long-cycle life lithium battery anode. Carbon, 2015, 92, 177-184.	5.4	78
50	Carbon Nanotubes Coated with Alumina as Gate Dielectrics of Field-Effect Transistors. Advanced Materials, 2006, 18, 181-185.	11.1	77
51	Molecular and nanoscale materials and devices in electronics. Advances in Colloid and Interface Science, 2004, 111, 133-157.	7.0	75
52	High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. Scientific Reports, 2013, 3, 2670.	1.6	75
53	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	1.7	70
54	Novel Insights and Perspectives into Weakly Coupled ReS2 toward Emerging Applications. CheM, 2019, 5, 505-525.	5.8	68

#	Article	IF	CITATIONS
55	Synthesis of Doped Porous 3D Graphene Structures by Chemical Vapor Deposition and Its Applications. Advanced Functional Materials, 2019, 29, 1904457.	7.8	64
56	Liquid Metals: A Novel Possibility of Fabricating 2D Metal Oxides. Advanced Materials, 2021, 33, e2005544.	11.1	64
57	A Superlattice-Stabilized Layered CuS Anode for High-Performance Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 17748-17756.	7.3	62
58	Biomimetic Graphene-Based 3D Scaffold for Long-Term Cell Culture and Real-Time Electrochemical Monitoring. Analytical Chemistry, 2018, 90, 1136-1141.	3.2	60
59	Controllable Fabrication of Graphene and Related Two-Dimensional Materials on Liquid Metals via Chemical Vapor Deposition. Accounts of Chemical Research, 2018, 51, 2839-2847.	7.6	60
60	Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study. Nano Research, 2012, 5, 402-411.	5.8	59
61	Crystalâ€Field Tuning of Photoluminescence in Twoâ€Dimensional Materials with Embedded Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, 755-759.	7.2	59
62	Vapor-Phase Incommensurate Heteroepitaxy of Oriented Single-Crystal CsPbBr ₃ on GaN: Toward Integrated Optoelectronic Applications. ACS Nano, 2019, 13, 10085-10094.	7.3	59
63	Advances and Trends in Chemically Doped Graphene. Advanced Materials Interfaces, 2020, 7, 2000999.	1.9	58
64	Oxidation as A Means to Remove Surface Contaminants on Cu Foil Prior to Graphene Growth by Chemical Vapor Deposition. Journal of Physical Chemistry C, 2015, 119, 13363-13368.	1.5	57
65	Newborn 2D materials for flexible energy conversion and storage. Science China Materials, 2016, 59, 459-474.	3.5	57
66	Ultrafast Self-Limited Growth of Strictly Monolayer WSe ₂ Crystals. Small, 2016, 12, 5741-5749.	5.2	57
67	A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale, 2015, 7, 1290-1295.	2.8	56
68	Fully Converting Graphite into Graphene Oxide Hydrogels by Preoxidation with Impure Manganese Dioxide. ACS Applied Materials & Interfaces, 2015, 7, 21356-21363.	4.0	55
69	Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosensors and Bioelectronics, 2017, 89, 28-42.	5.3	54
70	Highly Organized Epitaxy of Dirac Semimetallic PtTe ₂ Crystals with Extrahigh Conductivity and Visible Surface Plasmons at Edges. ACS Nano, 2018, 12, 9405-9411.	7.3	54
71	Stimuliâ€Responsive 2D Materials Beyond Graphene. Advanced Functional Materials, 2018, 28, 1802500.	7.8	54
72	Programmable Sub-nanometer Sculpting of Graphene with Electron Beams. ACS Nano, 2012, 6, 10327-10334.	7.3	53

#	Article	IF	CITATIONS
73	Electron-Driven <i>In Situ</i> Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS Nano, 2019, 13, 978-995.	7.3	51
74	Tower-like structure of ZnO nanocolumns. Chemical Communications, 2003, , 1304.	2.2	50
75	Tuning the Morphology and Crystal Structure of Li ₂ O ₂ : A Graphene Model Electrode Study for Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2016, 8, 21350-21357.	4.0	48
76	Design of catalytic substrates for uniform graphene films: from solid-metal to liquid-metal. Nanoscale, 2015, 7, 9105-9121.	2.8	47
77	Isotropic Growth of Graphene toward Smoothing Stitching. ACS Nano, 2016, 10, 7189-7196.	7.3	47
78	Controllable Growth of Graphene on Liquid Surfaces. Advanced Materials, 2019, 31, e1800690.	11.1	47
79	Few-Layer Graphene Shells and Nonmagnetic Encapsulates: A Versatile and Nontoxic Carbon Nanomaterial. ACS Nano, 2013, 7, 10552-10562.	7.3	46
80	Selfâ€Aligned Singleâ€Crystalline Hexagonal Boron Nitride Arrays: Toward Higher Integrated Electronic Devices. Advanced Electronic Materials, 2015, 1, 1500223.	2.6	46
81	Vaporâ€phase growth of highâ€quality waferâ€scale twoâ€dimensional materials. InformaÄnÃ-Materiály, 2019, 1 460-478.	''8. 5	46
82	Moiré is More: Access to New Properties of Two-Dimensional Layered Materials. Matter, 2020, 3, 1142-1161.	5.0	46
83	Edge-to-Edge Oriented Self-Assembly of ReS ₂ Nanoflakes. Journal of the American Chemical Society, 2016, 138, 11101-11104.	6.6	43
84	Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials. Nature Communications, 2021, 12, 5886.	5.8	42
85	Universal Substrate-Trapping Strategy To Grow Strictly Monolayer Transition Metal Dichalcogenides Crystals. Chemistry of Materials, 2017, 29, 6095-6103.	3.2	40
86	Tuning the Morphology of Li ₂ O ₂ by Noble and 3d metals: A Planar Model Electrode Study for Li–O ₂ Battery. ACS Applied Materials & Interfaces, 2017, 9, 19800-19806.	4.0	39
87	Atomicâ€Scale Structural Modification of 2D Materials. Advanced Science, 2019, 6, 1801501.	5.6	39
88	GaN in different dimensionalities: Properties, synthesis, and applications. Materials Science and Engineering Reports, 2019, 138, 60-84.	14.8	39
89	Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Research, 2012, 5, 875-887.	5.8	38
90	lodine-Mediated Chemical Vapor Deposition Growth of Metastable Transition Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 4641-4644.	3.2	38

#	Article	IF	CITATIONS
91	A Magnetism-Assisted Chemical Vapor Deposition Method To Produce Branched or Iron-Encapsulated Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 7364-7368.	6.6	37
92	Human‣ike Sensing and Reflexes of Grapheneâ€Based Films. Advanced Science, 2016, 3, 1600130.	5.6	37
93	Insight into the rapid growth of graphene single crystals on liquid metal via chemical vapor deposition. Science China Materials, 2019, 62, 1087-1095.	3.5	37
94	New Frontiers in Electron Beam–Driven Chemistry in and around Graphene. Advanced Materials, 2019, 31, e1800715.	11.1	36
95	Scanning tunneling microscope observations of non-AB stacking of graphene on Ni films. Nano Research, 2011, 4, 712-721.	5.8	35
96	Electrochemically functional graphene nanostructure and layer-by-layer nanocomposite incorporating adsorption of electroactive methylene blue. Electrochimica Acta, 2012, 75, 71-79.	2.6	35
97	Uniform graphene on liquid metal by chemical vapour deposition at reduced temperature. Carbon, 2016, 96, 799-804.	5.4	35
98	Black Phosphorus: Properties, Synthesis, and Applications in Energy Conversion and Storage. ChemNanoMat, 2017, 3, 352-361.	1.5	34
99	Water-assisted growth of large-sized single crystal hexagonal boron nitride grains. Materials Chemistry Frontiers, 2017, 1, 1836-1840.	3.2	34
100	Thermally Induced Bending of ReS ₂ Nanowalls. Advanced Materials, 2018, 30, 1704585.	11.1	34
101	Universal growth of ultra-thin III–V semiconductor single crystals. Nature Communications, 2020, 11, 3979.	5.8	34
102	Direct synthesis of graphene from adsorbed organic solvent molecules over copper. RSC Advances, 2015, 5, 60884-60891.	1.7	32
103	Emerging Liquid Metal Biomaterials: From Design to Application. Advanced Materials, 2022, 34, e2201956.	11.1	32
104	Direct growth of molybdenum disulfide on arbitrary insulating surfaces by chemical vapor deposition. RSC Advances, 2015, 5, 4364-4367.	1.7	31
105	Obviously Angular, Cuboid-Shaped TiO2 Nanowire Arrays Decorated with Ag Nanoparticle as Ultrasensitive 3D Surface-Enhanced Raman Scattering Substrates. Journal of Physical Chemistry C, 2014, 118, 22711-22718.	1.5	30
106	Elemental 2D Materials: Progress and Perspectives Toward Unconventional Structures. Small Structures, 2021, 2, 2000101.	6.9	30
107	3D nitrogen-doped graphene/lî²-cyclodextrin: host–guest interactions for electrochemical sensing. Nanoscale, 2015, 7, 11922-11927.	2.8	29
108	Li-storage performance of binder-free and flexible iron fluoride@graphene cathodes. Journal of Materials Chemistry A, 2015, 3, 23930-23935.	5.2	29

#	Article	IF	CITATIONS
109	Ultrathin high- \hat{I}^{2} antimony oxide single crystals. Nature Communications, 2020, 11, 2502.	5.8	29
110	Multiwall nanotubes with intramolecular junctions (CNx/C): Preparation, rectification, logic gates, and application. Applied Physics Letters, 2004, 84, 4932-4934.	1.5	28
111	A New Technique for Controllably Producing Branched or Encapsulating Nanostructures in a Vapor–Liquid–Solid Process. Advanced Materials, 2007, 19, 386-390.	11.1	28
112	Insights into the Early Growth of Homogeneous Single-Layer Graphene over Ni–Mo Binary Substrates. Chemistry of Materials, 2013, 25, 3880-3887.	3.2	27
113	Nitrogen-doping induces tunable magnetism in ReS2. Npj 2D Materials and Applications, 2018, 2, .	3.9	27
114	2D Intrinsic Ferromagnetic MnP Single Crystals. Small, 2020, 16, 2001484.	5.2	27
115	Substrate Developments for the Chemical Vapor Deposition Synthesis of Graphene. Advanced Materials Interfaces, 2020, 7, 1902024.	1.9	27
116	In Situ Fabrication of Freestanding Singleâ€Atomâ€Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments. Advanced Science, 2021, 8, e2100619.	5.6	27
117	A General Electrochemical Strategy for Synthesizing Chargeâ€Transfer Complex Micro/Nanowires. Advanced Functional Materials, 2010, 20, 1209-1223.	7.8	25
118	Controllable Sliding Transfer of Waferâ€6ize Graphene. Advanced Science, 2016, 3, 1600006.	5.6	25
119	Hexagonal Boron Nitride–Graphene Core–Shell Arrays Formed by Self-Symmetrical Etching Growth. Journal of the American Chemical Society, 2017, 139, 13997-14000.	6.6	25
120	Self-Assembly of Metal Oxide Nanoparticles in Liquid Metal toward Nucleation Control for Graphene Single-Crystal Arrays. CheM, 2018, 4, 626-636.	5.8	25
121	Direct route to high-density and uniform assembly of Au nanoparticles on carbon nanotubes. Carbon, 2006, 44, 3139-3142.	5.4	24
122	Touch Ablation of Lithium Dendrites via Liquid Metal for High-Rate and Long-Lived Batteries. CCS Chemistry, 2021, 3, 686-695.	4.6	24
123	High performance field-effect transistors made of a multiwall CNx/C nanotube intramolecular junction. Applied Physics Letters, 2003, 83, 4824-4826.	1.5	23
124	Synthesis of Noble Metal/Carbon Nanotube Composites in Supercritical Methanol. Journal of Nanoscience and Nanotechnology, 2006, 6, 691-697.	0.9	23
125	Growth of Uniform Monolayer Graphene Using Iron-Group Metals via the Formation of an Antiperovskite Layer. Chemistry of Materials, 2015, 27, 8230-8236.	3.2	23
126	Space-confined growth of metal halide perovskite crystal films. Nano Research, 2021, 14, 1609-1624.	5.8	23

#	Article	IF	CITATIONS
127	A Liquid Metal Reaction System for Advanced Material Manufacturing. Accounts of Materials Research, 2021, 2, 669-680.	5.9	23
128	2D GaN for Highly Reproducible Surface Enhanced Raman Scattering. Small, 2021, 17, e2103442.	5.2	23
129	Ga2O3Nanoribbonsâ^'Eu2O3Multisheaths Heterostructure and Energy Transfer. Journal of Physical Chemistry B, 2004, 108, 13074-13078.	1.2	22
130	Controlled growth of single-walled carbon nanotubes at atmospheric pressure by catalytic decomposition of ethanol and an efficient purification method. Journal of Materials Chemistry, 2007, 17, 357-363.	6.7	22
131	Controllable Fabrication of Nanostructured Graphene Towards Electronics. Advanced Electronic Materials, 2016, 2, 1500456.	2.6	22
132	Coral-Inspired Nanoengineering Design for Long-Cycle and Flexible Lithium-Ion Battery Anode. ACS Applied Materials & Interfaces, 2016, 8, 9185-9193.	4.0	22
133	Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2020, 36, 504-510.	1.3	22
134	"Rings of saturn-like―nanoarrays with high number density of hot spots for surface-enhanced Raman scattering. Applied Physics Letters, 2014, 105, 033515.	1.5	21
135	Ultrahigh Temperature Graphene Molecular Heater. Advanced Materials Interfaces, 2018, 5, 1701299.	1.9	21
136	Synthetic strategies of two-dimensional porous materials towards highly effective catalysts. FlatChem, 2019, 15, 100109.	2.8	21
137	Graphene-assisted multiple-input high-base optical computing. Scientific Reports, 2016, 6, 32911.	1.6	20
138	Synthesis and Device Integration of Carbon Nanotube/Silica Coreâ^'Shell Nanowires. Journal of Physical Chemistry C, 2007, 111, 7661-7665.	1.5	19
139	Graphene-assisted nonlinear optical device for four-wave mixing based tunable wavelength conversion of QPSK signal. Optics Express, 2015, 23, 26158.	1.7	19
140	Low-temperature synthesis of sp2 carbon nanomaterials. Science Bulletin, 2019, 64, 1817-1829.	4.3	18
141	A Bright Future for Liquid Functional Materials?. Matter, 2019, 1, 1099-1103.	5.0	18
142	Direct synthesis of large-area Al-doped graphene by chemical vapor deposition: Advancing the substitutionally doped graphene family. Nano Research, 2022, 15, 1310-1318.	5.8	18
143	Fabrication and characterization of molecular scale field-effect transistors. Journal of Materials Chemistry, 2010, 20, 2305.	6.7	16
144	Magnetically Controlled Onâ€Đemand Switching of Batteries. Advanced Science, 2020, 7, 2000184.	5.6	16

#	Article	IF	CITATIONS
145	Growth of 2D MoP single crystals on liquid metals by chemical vapor deposition. Science China Materials, 2021, 64, 1182-1188.	3.5	15
146	The formation of recumbent bamboo-like carbon nanotube patterns on a patterned gold substrate by chemical vapor deposition. Carbon, 2008, 46, 255-260.	5.4	14
147	Experimental demonstration on two-input optical high-base hybrid doubling and subtraction functions in graphene. Optics Express, 2015, 23, 31728.	1.7	14
148	In Situ Nâ€Ðoped Graphene and Mo Nanoribbon Formation from Mo ₂ Ti ₂ C ₃ MXene Monolayers. Small, 2020, 16, e1907115.	5.2	14
149	Selective Antisite Defect Formation in WS ₂ Monolayers via Reactive Growth on Dilute Wâ€Au Alloy Substrates. Advanced Materials, 2022, 34, e2106674.	11.1	14
150	Dual Selfâ€Built Gating Boosts the Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, e2202479.	11.1	14
151	Graphene: An Outstanding Multifunctional Coating for Conventional Materials. Small, 2017, 13, 1603337.	5.2	13
152	Selfâ€Adapting Wettability of ReS ₂ under a Constant Stimulus. Advanced Materials, 2018, 30, e1804559.	11.1	13
153	In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope. Materials, 2018, 11, 896.	1.3	13
154	A pinecone-inspired nanostructure design for long-cycle and high performance Si anodes. Journal of Materials Chemistry A, 2016, 4, 5395-5401.	5.2	12
155	Disassembly of 2D Vertical Heterostructures. Advanced Materials, 2019, 31, e1805976.	11.1	12
156	Segregation Phenomenon and Its Control in the Catalytic Growth of Graphene. Acta Chimica Sinica, 2013, 71, 308.	0.5	12
157	General synthesis of 2D rare-earth oxide single crystals with tailorable facets. National Science Review, 2022, 9, nwab153.	4.6	11
158	Ultrafast Singleâ€Crystalâ€ŧoâ€Singleâ€Crystal Transformation from Metal–Organic Framework to 2D Hydroxide. Advanced Materials, 2022, 34, e2106400.	11.1	11
159	The Universal Growth of Ultrathin Perovskite Single Crystals. Advanced Materials, 2022, 34, e2108396.	11.1	11
160	Template-free synthesis of single-crystalline cadmium nanotubes. Chemical Communications, 2004, , 556.	2.2	10
161	Atomic Scale Materials for Emerging Robust Catalysis. Small Methods, 2018, 2, 1800181.	4.6	10
162	Structural Designs for Accommodating Volume Expansion in Sodium Ion Batteries. Chinese Journal of Chemistry, 2018, 36, 866-874.	2.6	10

#	Article	IF	CITATIONS
163	Precise Vapor-Phase Synthesis of Two-Dimensional Atomic Single Crystals. IScience, 2019, 20, 527-545.	1.9	10
164	Engineering Electrocatalytic Microcells for Two-Dimensional Materials. Cell Reports Physical Science, 2020, 1, 100190.	2.8	10
165	Molecular Scaffold Growth of Two-Dimensional, Strong Interlayer-Bonding-Layered Materials. CCS Chemistry, 0, , 117-127.	4.6	10
166	In Situ Investigation of the Motion Behavior of Graphene on Liquid Copper. Advanced Science, 2021, 8, e2100334.	5.6	9
167	In Situ Investigating the Mechanism of Graphene Growth by Chemical Vapor Deposition. , 2022, 4, 528-540.		8
168	Vertical Graphene Growth from Amorphous Carbon Films Using Oxidizing Gases. Journal of Physical Chemistry C, 2015, 119, 17965-17970.	1.5	7
169	Synthesis of sulfur encapsulated 3D graphene sponge driven by micro-pump and its application in Li–S battery. Journal of Materiomics, 2015, 1, 333-339.	2.8	7
170	Phase Conjugated and Transparent Wavelength Conversions of Nyquist 16-QAM Signals Employing a Single-Layer Graphene Coated Fiber Device. Scientific Reports, 2016, 6, 22379.	1.6	7
171	Adsorptionâ€Free Growth of Ultraâ€Thin Molybdenum Membranes with a Lowâ€Symmetry Rectangular Lattice Structure. Small, 2020, 16, 2001325.	5.2	7
172	In situ observations of Pt nanoparticles coalescing inside carbon nanotubes. RSC Advances, 2014, 4, 49442-49445.	1.7	6
173	Regulation of Two-Dimensional Lattice Deformation Recovery. IScience, 2019, 13, 277-283.	1.9	6
174	Graphene: Controllable Growth of Graphene on Liquid Surfaces (Adv. Mater. 9/2019). Advanced Materials, 2019, 31, 1970060.	11.1	6
175	Synthesis of Meta Symmetric <scp>1T</scp> 'â€ <scp>WTe₂</scp> Using an <scp>Edgeâ€Induced</scp> Mechanism. Chinese Journal of Chemistry, 2020, 38, 709-713.	2.6	6
176	Bubbleâ€Induced In Situ Property Modulation of Liquid Metal. Advanced Materials Interfaces, 2021, 8, 2002204.	1.9	6
177	Single-atom catalytic growth of crystals using graphene as a case study. Npj 2D Materials and Applications, 2021, 5, .	3.9	6
178	Selfâ€Limiting Synthesis of Ultrathin Ge(110) Single Crystal via Liquid Metal. Small, 2022, 18, e2106341.	5.2	6
179	Graphene Coatings for the Mitigation of Electron Stimulated Desorption and Fullerene Cap Formation. Chemistry of Materials, 2014, 26, 4998-5003.	3.2	5
180	Integrating Properties Modification in the Synthesis of Metal Halide Perovskites. Advanced Materials Technologies, 2019, 4, 1800321.	3.0	5

#	Article	IF	CITATIONS
181	Wet Purification of Aligned Carbon Nanotube Arrays and Its Impact on the Morphology of the Carbon Nanotube Arrays. Acta Physico-chimica Sinica, 2008, 24, 951-954.	0.6	4
182	Moiré patterns and step edges on few-layer graphene grown on nickel films. Chinese Physics B, 2014, 23, 116801.	0.7	4
183	Nanophase graphene frameworks. Nanoscale, 2019, 11, 9264-9269.	2.8	4
184	Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 464-475.	2.2	4
185	Infinite possibilities of ultrathin III-V semiconductors: Starting from synthesis. IScience, 2022, 25, 103835.	1.9	4
186	Electrochemical Synthesis of Highâ€Quality AgTCNQ Nanowires Using Carbon Nanotube Electrodes. Advanced Materials, 2009, 21, 4742-4746.	11.1	3
187	New designing for nanostructured 2D materials and 2D superlattices. Science China Materials, 2018, 61, 761-762.	3.5	3
188	Electrocatalysts: Nanometric Ni5 P4 Clusters Nested on NiCo2 O4 for Efficient Hydrogen Production via Alkaline Water Electrolysis (Adv. Energy Mater. 29/2018). Advanced Energy Materials, 2018, 8, 1870129.	10.2	3
189	Graphene Conformal oated Ceramics in Arbitrary Shape Targeting Smart Widgets. Advanced Materials Interfaces, 2017, 4, 1700467.	1.9	3
190	Exploring Interfaces Through Synchrotron Radiation Characterization Techniques: A Graphene Case. Advanced Functional Materials, 2022, 32, .	7.8	3
191	Generic Approach to Modulate Conductivity and Coat Discontinuous Gate Dielectrics of Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 8098-8104.	1.5	2
192	2D Material Disassembly: Disassembly of 2D Vertical Heterostructures (Adv. Mater. 4/2019). Advanced Materials, 2019, 31, 1970022.	11.1	2
193	Seeded growth of 2D materials. Matter, 2021, 4, 2699-2701.	5.0	2
194	Controllable synthesis of two dimensional heterostructures and their application. Chinese Science Bulletin, 2017, 62, 2262-2278.	0.4	2
195	Chemical insights into two-dimensional quantum materials. Matter, 2022, 5, 2168-2189.	5.0	2
196	Graphene-assisted multiple-input high-base optical computing. , 2016, , .		1
197	Preface: innovative flexible energy. Science China Materials, 2016, 59, 409-409.	3.5	1
198	Crystalâ€Field Tuning of Photoluminescence in Twoâ€Dimensional Materials with Embedded Lanthanide Ions. Angewandte Chemie, 2018, 130, 763-767.	1.6	1

#	Article	IF	CITATIONS
199	High-mobility graphene on liquid p-block elements by ultra-low-loss CVD growth. , 0, .		1
200	Controllable growth of single-crystal graphene. Chinese Science Bulletin, 2015, 60, 2091-2107.	0.4	1
201	Self-assembly pre-occupancy for 2D super-ordered emptiness arrays in graphene. Science China Materials, 2022, 65, 1869-1875.	3.5	1
202	Chemical Vapor Deposition (CVD) of Graphene for Four-Wave-Mixing (FWM) Based QPSK Wavelength Conversion. , 2015, , .		0
203	Monolayer Crystals: Ultrafast Self-Limited Growth of Strictly Monolayer WSe ₂ Crystals (Small 41/2016). Small, 2016, 12, 5780-5780.	5.2	0
204	Inside Cover: Structural Designs for Accommodating Volume Expansion in Sodium Ion Batteries (Chin.) Tj ETQq0	0 0 rgBT /	Overlock 10 ⁻

205	Structure design of graphene based electrode materials and its application in secondary battery. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2015, 45, 1227-1244.	0.3	0
206	Selective Antisite Defect Formation in WS ₂ Monolayers via Reactive Growth on Dilute Wâ€Au Alloy Substrates (Adv. Mater. 3/2022). Advanced Materials, 2022, 34, .	11.1	0