Gilles Benichou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7830132/publications.pdf Version: 2024-02-01

CILLES RENICHOLL

#	Article	IF	CITATIONS
1	Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Science Immunology, 2016, 1, .	11.9	152
2	Allorecognition by T Lymphocytes and Allograft Rejection. Frontiers in Immunology, 2016, 7, 582.	4.8	150
3	Immune recognition and rejection of allogeneic skin grafts. Immunotherapy, 2011, 3, 757-770.	2.0	125
4	Enzyme-Linked Immunosorbent Spot Assay Analysis of Peripheral Blood Lymphocyte Reactivity to Donor HLA-DR Peptides. Journal of the American Society of Nephrology: JASN, 2002, 13, 252-259.	6.1	117
5	Role of CD4+ and CD8+ T Cells in Allorecognition: Lessons from Corneal Transplantation. Journal of Immunology, 2001, 167, 1891-1899.	0.8	114
6	Mechanisms of early peripheral CD4 T-cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion but not regulatory cells. Blood, 2004, 103, 4336-4343.	1.4	106
7	Relevance of the Direct Pathway of Sensitization in Corneal Transplantation Is Dictated by the Graft Bed Microenvironment. Journal of Immunology, 2004, 173, 4464-4469.	0.8	104
8	Tolerance to Noninherited Maternal MHC Antigens in Mice. Journal of Immunology, 2003, 171, 5554-5561.	0.8	100
9	Host Alloreactive Memory T Cells Influence Tolerance to Kidney Allografts in Nonhuman Primates. Science Translational Medicine, 2011, 3, 86ra51.	12.4	97
10	Early Acceptance of Renal Allografts in Mice Is Dependent on Foxp3+ Cells. American Journal of Pathology, 2011, 178, 1635-1645.	3.8	82
11	Natural killer cells in rejection and tolerance of solid organ allografts. Current Opinion in Organ Transplantation, 2011, 16, 47-53.	1.6	81
12	Role of Memory T Cells in Allograft Rejection and Tolerance. Frontiers in Immunology, 2017, 8, 170.	4.8	79
13	Modulation of Tissue-Specific Immune Response to Cardiac Myosin Can Prolong Survival of Allogeneic Heart Transplants. Journal of Immunology, 2002, 169, 1168-1174.	0.8	70
14	Indirect T-cell allorecognition: perspectives for peptide-based therapy in transplantation l. Trends in Immunology, 1997, 18, 67-71.	7.5	60
15	The relative contribution of direct and indirect antigen recognition pathways to the alloresponse and graft rejection depends upon the nature of the transplant. Human Immunology, 2002, 63, 912-925.	2.4	58
16	Phenotype, Distribution and Alloreactive Properties of Memory T Cells from Cynomolgus Monkeys. American Journal of Transplantation, 2010, 10, 1375-1384.	4.7	57
17	Direct and indirect antigen recognition: the pathways to allograft immune rejection. Frontiers in Bioscience - Landmark, 1999, 4, d476.	3.0	57
18	Suppressive Regulatory T Cell Activity Is Potentiated by Glycogen Synthase Kinase 3β Inhibition. Journal of Biological Chemistry, 2010, 285, 32852-32859.	3.4	47

GILLES BENICHOU

#	Article	IF	CITATIONS
19	Differential Roles of Direct and Indirect Allorecognition Pathways in the Rejection of Skin and Corneal Transplants. Transplantation, 2009, 87, 16-23.	1.0	44
20	The Contribution of Peptides to T Cell Allorecognition and Allograft Rejection. International Reviews of Immunology, 1996, 13, 231-243.	3.3	43
21	Emerging role of exosomes in allorecognition and allograft rejection. Current Opinion in Organ Transplantation, 2018, 23, 22-27.	1.6	43
22	Extracellular vesicles in allograft rejection and tolerance. Cellular Immunology, 2020, 349, 104063.	3.0	41
23	Induced regulatory T cells in allograft tolerance via transient mixed chimerism. JCI Insight, 2016, 1, .	5.0	40
24	Disruption of the determinant hierarchy on a self-MHC peptide: concomitant tolerance induction to the dominant determinant and priming to the cryptic self-determinant. International Immunology, 1994, 6, 131-138.	4.0	37
25	Dual effects of the alloresponse by Th1 and Th2 cells on acute and chronic rejection of allotransplants. European Journal of Immunology, 2009, 39, 3000-3009.	2.9	35
26	Induction of T-cell response to cryptic MHC determinants during allograft rejection. Human Immunology, 2000, 61, 1352-1362.	2.4	28
27	Innate Immunity and Resistance to Tolerogenesis in Allotransplantation. Frontiers in Immunology, 2012, 3, 73.	4.8	28
28	The presentation of self and allogeneic MHC peptides to T lymphocytes. Human Immunology, 1998, 59, 540-548.	2.4	27
29	T cell antigenicity and immunogenicity of allogeneic exosomes. American Journal of Transplantation, 2021, 21, 2583-2589.	4.7	24
30	Induction of autoimmunity after allotransplantation. Frontiers in Bioscience - Landmark, 2007, 12, 4362.	3.0	22
31	Primary Vascularization of Allografts Governs Their Immunogenicity and Susceptibility to Tolerogenesis. Journal of Immunology, 2013, 191, 1948-1956.	0.8	18
32	Tolerance induction after organ transplantation, "delayed tolerance,―via the mixed chimerism approach. Chimerism, 2012, 3, 24-28.	0.7	17
33	Bidirectional alloreactivity. Chimerism, 2012, 3, 29-36.	0.7	16
34	Mechanisms of Immunotherapeutic Intervention by Anti-CD154 (CD40L) Antibody in High-Risk Corneal Transplantation. Journal of Interferon and Cytokine Research, 2002, 22, 1217-1225.	1.2	14
35	Contributions of Direct and Indirect Alloresponses to Chronic Rejection of Kidney Allografts in Nonhuman Primates. Journal of Immunology, 2011, 187, 4589-4597.	0.8	14
36	Effects of an agonist interleukin-2/Fc fusion protein, a mutant antagonist interleukin-15/Fc fusion protein, and sirolimus on cardiac allograft survival in non-human primates. Journal of Heart and Lung Transplantation, 2012, 31, 427-435.	0.6	13

GILLES BENICHOU

#	Article	IF	CITATIONS
37	Transplantation Tolerance to a Single Noninherited MHC Class I Maternal Alloantigen Studied in a TCR-Transgenic Mouse Model. Journal of Immunology, 2011, 186, 1442-1449.	0.8	12
38	Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56.	1.6	12
39	Why some organ allografts are tolerated better than others: new insights for an old question. Current Opinion in Organ Transplantation, 2019, 24, 49-57.	1.6	10
40	Induction of allograft tolerance in nonhuman primates and humans. Frontiers in Bioscience - Landmark, 2007, 12, 4248.	3.0	9
41	A Paradigm Shift on the Question of B Cells in Transplantation? Recent Insights on Regulating the Alloresponse. Frontiers in Immunology, 2017, 8, 80.	4.8	8
42	Modulation of alloreactivity to MHC-derived peptides and transplantation tolerance. Frontiers in Bioscience - Landmark, 2007, 12, 4239.	3.0	6
43	Both Rejection and Tolerance of Allografts Can Occur in the Absence of Secondary Lymphoid Tissues. Journal of Immunology, 2015, 194, 1364-1371.	0.8	6
44	Maintaining T cell tolerance of alloantigens: Lessons from animal studies. American Journal of Transplantation, 2018, 18, 1843-1856.	4.7	6
45	Contrasting effects of B cell depletion on CD4+ and CD8+ memory T cell responses generated after transplantation. American Journal of Transplantation, 2020, 20, 2551-2558.	4.7	6
46	Graft-derived exosomes. When small vesicles play a big role in transplant rejection. American Journal of Transplantation, 2018, 18, 1585-1586.	4.7	5
47	The road to transplant tolerance is paved with good dendritic cells. European Journal of Immunology, 2013, 43, 584-588.	2.9	4
48	Editorial: Allorecognition by Leukocytes of the Adaptive Immune System. Frontiers in Immunology, 2017, 8, 1555.	4.8	4
49	The Presentation of Self-Peptides: Tolerance and Competition. International Reviews of Immunology, 1990, 6, 75-88.	3.3	3

50 Mechanisms of Allorecognition. , 2004, , 107-137.

2