Marianna LucafÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7829705/publications.pdf

Version: 2024-02-01

516710 642732 48 689 16 23 citations g-index h-index papers 48 48 48 1263 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Causes of Treatment Failure in Children With Inflammatory Bowel Disease Treated With Infliximab. Journal of Pediatric Gastroenterology and Nutrition, 2019, 68, 37-44.	1.8	41
2	Role of the Long Nonâ€Coding RNA Growth Arrestâ€Specific 5 in Glucocorticoid Response in Children with Inflammatory Bowel Disease. Basic and Clinical Pharmacology and Toxicology, 2018, 122, 87-93.	2.5	41
3	Study of a potential drug delivery system based on carbon nanoparticles: effects of fullerene derivatives in MCF7 mammary carcinoma cells. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	38
4	New Potential Therapeutic Approach for the Treatment of B-Cell Malignancies Using Chlorambucil/Hydroxychloroquine-Loaded Anti-CD20 Nanoparticles. PLoS ONE, 2013, 8, e74216.	2.5	34
5	Profiling the molecular mechanism of fullerene cytotoxicity on tumor cells by RNA-seq. Toxicology, 2013, 314, 183-192.	4.2	31
6	Neutralization of extracellular NAMPT (nicotinamide phosphoribosyltransferase) ameliorates experimental murine colitis. Journal of Molecular Medicine, 2020, 98, 595-612.	3.9	31
7	Pharmacogenetics of treatments for inflammatory bowel disease. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 1209-1223.	3.3	27
8	MicroRNAs as tools to predict glucocorticoid response in inflammatory bowel diseases. World Journal of Gastroenterology, 2013, 19, 7947.	3.3	26
9	Long Non-Coding RNA GAS5 and Intestinal MMP2 and MMP9 Expression: A Translational Study in Pediatric Patients with IBD. International Journal of Molecular Sciences, 2019, 20, 5280.	4.1	24
10	Glucocorticoid pharmacogenetics in pediatric idiopathic nephrotic syndrome. Pharmacogenomics, 2015, 16, 1631-1648.	1.3	23
11	Microbiota and Drug Response in Inflammatory Bowel Disease. Pathogens, 2021, 10, 211.	2.8	23
12	Expression pattern of long non-coding RNA growth arrest-specific 5 in the remission induction therapy in childhood acute lymphoblastic leukemia. Journal of Medical Biochemistry, 2019, 38, 292-298.	1.7	22
13	Therapeutic drug monitoring to improve outcome of anti-TNF drugs in pediatric inflammatory bowel disease. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 527-539.	3.3	20
14	Hydrophilic polymer coated monodispersed Fe ₃ O ₄ nanostructures and their cytotoxicity. Materials Research Express, 2014, 1, 015015.	1.6	19
15	Theophylline as a precision therapy in a young girl with PIK3R1 immunodeficiency. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 2165-2167.	3.8	19
16	Effects of Two Fullerene Derivatives on Monocytes and Macrophages. BioMed Research International, 2015, 2015, 1-13.	1.9	16
17	Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from <i>Mytilus galloprovincialis</i> . Genome Biology and Evolution, 2015, 7, 2203-2219.	2.5	16
18	Pharmacogenomics of Antibiotics. International Journal of Molecular Sciences, 2020, 21, 5975.	4.1	16

#	Article	IF	Citations
19	RNA-seq analysis of the whole transcriptome of MDA-MB-231 mammary carcinoma cells exposed to the antimetastatic drug NAMI-A. Metallomics, 2015, 7, 1439-1450.	2.4	15
20	Differential expression of <scp>GAS</scp> 5 in rapamycinâ€induced reversion of glucocorticoid resistance. Clinical and Experimental Pharmacology and Physiology, 2016, 43, 602-605.	1.9	15
21	High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients. International Journal of Molecular Sciences, 2018, 19, 1399.	4.1	15
22	A Cationic [60] Fullerene Derivative Reduces Invasion and Migration of HT-29 CRC Cells in Vitro at Dose Free of Significant Effects on Cell Survival. Nano-Micro Letters, 2014, 6, 163-168.	27.0	14
23	Determination of Serum Infliximab Concentration by Pointâ€ofâ€care Devices in Children With Inflammatory Bowel Disease. Journal of Pediatric Gastroenterology and Nutrition, 2019, 69, 474-479.	1.8	14
24	Azathioprine Biotransformation in Young Patients with Inflammatory Bowel Disease: Contribution of Glutathione-S Transferase M1 and A1 Variants. Genes, 2019, 10, 277.	2.4	13
25	Serum Adalimumab Levels After Induction Are Associated With Long-Term Remission in Children With Inflammatory Bowel Disease. Frontiers in Pediatrics, 2021, 9, 646671.	1.9	13
26	Emerging Insights on the Interaction Between Anticancer and Immunosuppressant Drugs and Intestinal Microbiota in Pediatric Patients. Clinical and Translational Science, 2020, 13, 238-259.	3.1	12
27	Risk Factors and Outcomes of Thalidomide-induced Peripheral Neuropathy in a Pediatric Inflammatory Bowel Disease Cohort. Inflammatory Bowel Diseases, 2017, 23, 1810-1816.	1.9	11
28	Pharmacogenetic variants of infliximab response in young patients with inflammatory bowel disease. Clinical and Translational Science, 2021, 14, 2184-2192.	3.1	11
29	MIF plasma level as a possible tool to predict steroid responsiveness in children with idiopathic nephrotic syndrome. European Journal of Clinical Pharmacology, 2019, 75, 1675-1683.	1.9	9
30	Pharmacotranscriptomic Biomarkers in Glucocorticoid Treatment of Pediatric Inflammatory Bowel Disease. Current Medicinal Chemistry, 2018, 25, 2855-2871.	2.4	9
31	Pro-inflammatory effects of palytoxin: an in vitro study on human keratinocytes and inflammatory cells. Toxicology Research, 2016, 5, 1172-1181.	2.1	7
32	miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway. Cancer Chemotherapy and Pharmacology, 2020, 86, 361-374.	2.3	7
33	Patient-derived organoids for therapy personalization in inflammatory bowel diseases. World Journal of Gastroenterology, 2022, 28, 2636-2653.	3.3	7
34	Sedation and analgesia in children with cerebral palsy: a narrative review. World Journal of Pediatrics, 2019, 15, 432-440.	1.8	6
35	Pharmacogenetics of thiopurines. Cancer Drug Resistance (Alhambra, Calif), 2019, 2, 256-270.	2.1	6
36	Clinical Application of Thiopurine Pharmacogenomics in Pediatrics. Current Drug Metabolism, 2020, 21, 53-62.	1.2	6

#	Article	IF	CITATIONS
37	Imidazo[2,1- <i>b</i>)benzothiazol Derivatives as Potential Allosteric Inhibitors of the Glucocorticoid Receptor. ACS Medicinal Chemistry Letters, 2018, 9, 339-344.	2.8	4
38	Gender May Influence the Immunosuppressive Actions of Prednisone in Young Patients With Inflammatory Bowel Disease. Frontiers in Immunology, 2021, 12, 673068.	4.8	4
39	Role of tristetraprolin phosphorylation in paediatric patients with inflammatory bowel disease. World Journal of Gastroenterology, 2019, 25, 5918-5925.	3.3	4
40	Pharmacokinetics and pharmacodynamics of thiopurines in an inÂvitro model of human hepatocytes: Insights from an innovative mass spectrometry assay. Chemico-Biological Interactions, 2017, 275, 189-195.	4.0	3
41	A patent review of anticancer glucocorticoid receptor modulators (2014-present). Expert Opinion on Therapeutic Patents, 2020, 30, 313-324.	5. 0	3
42	Extracellular Vesicles as Innovative Tools for Assessing Adverse Effects of Immunosuppressant Drugs. Current Medicinal Chemistry, 2022, 29, 3586-3600.	2.4	3
43	Atomic Force Microscopy Application for the Measurement of Infliximab Concentration in Healthy Donors and Pediatric Patients with Inflammatory Bowel Disease. Journal of Personalized Medicine, 2022, 12, 948.	2.5	3
44	Carbamazepine-induced thrombocytopenic purpura in a child: Insights from a genomic analysis. Blood Cells, Molecules, and Diseases, 2016, 59, 97-99.	1.4	2
45	Insights into the cellular pharmacokinetics and pharmacodynamics of thiopurine antimetabolites in a model of human intestinal cells. Chemico-Biological Interactions, 2021, 347, 109624.	4.0	2
46	Glucocorticoid Receptor Interacting Co-regulators: Putative Candidates for Future Drug Targeting Therapy. Mini-Reviews in Medicinal Chemistry, 2017, 17, 657-666.	2.4	2
47	Emerging molecular mechanisms underlying cancer metastasis: the rising role of the long non-coding RNA GAS5. Translational Cancer Research, 2016, 5, S827-S830.	1.0	2
48	MO006INFLAMMASOME ACTIVATOR NLRP3 HYPOMETHYLATION IS ASSOCIATED WITH GLUCOCORTICOID RESISTANCE IN PATIENTS WITH IDIOPATHIC NEPHROTIC SYNDROME. Nephrology Dialysis Transplantation, 2020, 35, .	0.7	0