Sisir K Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7829355/publications.pdf Version: 2024-02-01

SISID K MONDAI

#	Article	IF	CITATIONS
1	Origin of Fe–Ni–Cu (Co) sulfide and Fe–Ti oxide minerals in the <i>c.</i> 1.77 Ga dolerite dyke, Singhbhum Craton (eastern India). Geological Society Special Publication, 2022, 518, 553-574.	1.3	1
2	Petrogenesis of the late Archean Pillow Basalts from the Chitradurga greenstone belt, Western Dharwar Craton (southern India). Journal of Earth System Science, 2022, 131, 1.	1.3	1
3	Compositional variations, thermometry, and probable parental magmas of Archean chromite from the Sargur greenstone belt, Western Dharwar Craton (India). Lithos, 2021, 380-381, 105867.	1.4	5
4	Petrology and geochemistry of the Deccan basalts from the KBH-7 borehole, Koyna Seismic Zone (Western Ghats, India): Implications for nature of crustal contamination and sulfide saturation of magma. Lithos, 2021, 380-381, 105864.	1.4	4
5	Geochemistry of Fe-Ti oxide and sulfide minerals in gabbroic rocks and magnetitite of the Archean Mayurbhanj mafic complex (eastern India): Magma fractionation, thermometry and oxygen fugacity of re-equilibration, and implications for Ni-Cu mineralization. Ore Geology Reviews, 2021, 131, 104005.	2.7	8
6	Origin of Ni-Cu-(PGEÂ+ÂAu) sulfides in late-Archean komatiitic suite of rocks in the Shankaraghatta belt, Western Dharwar Craton (India). Ore Geology Reviews, 2021, 138, 104375.	2.7	0
7	3.2-3.0Ga Sm-Nd age of gabbro-anorthositic rocks from the Nuasahi and Mayurbhanj Complexes (eastern India): Major mafic magmatic event in the Singhbhum Craton and associated Ni-Cu-(PGE) sulphide mineralization. , 2021, , .		1
8	Origin of Ni-Cu-sulfide minerals in the komatiitic rock suite of the Archean Gorumahisani Greenstone belt, Singhbhum Craton (eastern India). , 2021, , .		2
9	Mineral-chemistry of silicates, Fe-Ti oxides and sulfides in gabbro and magnetitite of the Archean Nuasahi complex (India): Implications for magma fractionation, thermometry and oxygen fugacity of re-equilibration and Ni-Cu mineralization. , 2021, , .		0
10	Re-Os Isotope Systematics of Sulfides in Chromitites and Host Lherzolites of the Andaman Ophiolite, India. Minerals (Basel, Switzerland), 2020, 10, 686.	2.0	6
11	Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India). Precambrian Research, 2019, 329, 5-17.	2.7	52
12	Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India) – Reply. Precambrian Research, 2019, 329, 23-25.	2.7	2
13	Platinum-group element geochemistry of boninite-derived Mesoarchean chromitites and ultramafic-mafic cumulate rocks from the Sukinda Massif (Orissa, India). Ore Geology Reviews, 2019, 104, 722-744.	2.7	20
14	Geochemistry and mineralogy of Pd in the magnetitite layer within the upper gabbro of the Mesoarchean Nuasahi Massif (Orissa, India). Mineralium Deposita, 2018, 53, 547-564.	4.1	12
15	Petrogenetic Evolution of Chromite Deposits in the Archean Greenstone Belts of India. , 2018, , 159-195.		5
16	Neoarchaeanâ€Palaeoproterozoic Mafic Dyke Swarms from the Singhbhum Granite Complex, Singhbhum Craton, Eastern India: Implications for Identification of Large Igneous Provinces and Their Possible Continuation on Other Formerly Adjacent Crustal Blocks. Acta Geologica Sinica, 2016, 90, 17-18.	1.4	9
17	The role of reacting solution and temperature on compositional evolution during harzburgite alteration: Constraints from the Mesoarchean Nuasahi Massif (eastern India). Lithos, 2016, 256-257, 228-242.	1.4	4
18	Formation of Mg-rich Olivine Pseudomorphs in Serpentinized Dunite from the Mesoarchean Nuasahi Massif, Eastern India: Insights into the Evolution of Fluid Composition at the Mineral–Fluid Interface. Journal of Petrology, 2016, 57, 3-26.	2.8	21

SISIR K MONDAL

#	Article	IF	CITATIONS
19	Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1ÂGa ultramafic–mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India). Contributions To Mineralogy and Petrology, 2015, 169, 1.	3.1	28
20	Oxidative release of chromium from Archean ultramafic rocks, its transport and environmental impact – A Cr isotope perspective on the Sukinda valley ore district (Orissa, India). Applied Geochemistry, 2015, 59, 125-138.	3.0	75
21	Goldschmidt Conference 2013, Florence, Italy. Journal of the Geological Society of India, 2014, 83, 104-105.	1.1	0
22	Platinum-group element (PGE) geochemistry of Mesoarchean ultramafic–mafic cumulate rocks and chromitites from the Nuasahi Massif, Singhbhum Craton (India). Lithos, 2014, 205, 322-340.	1.4	26
23	Platinum-group element geochemistry of komatiite-derived 3.1 Ga ultramafic–mafic rocks and chromitites from the Nuggihalli greenstone belt, Western Dharwar craton (India). Chemical Geology, 2014, 386, 190-208.	3.3	15
24	Ore deposits and the role of the lithospheric mantle. Lithos, 2013, 164-167, 1.	1.4	0
25	The 3.1 Ga Nuggihalli chromite deposits, Western Dharwar craton (India): Geochemical and isotopic constraints on mantle sources, crustal evolution and implications for supercontinent formation and ore mineralization. Lithos, 2012, 155, 392-409.	1.4	37
26	21stAnnualV. M. Goldschmidt Conference, Prague, Czech Republic. Journal of the Geological Society of India, 2012, 79, 111-112.	1.1	0
27	Platinum group element (PGE) geochemistry to understand the chemical evolution of the Earth's mantle. Journal of the Geological Society of India, 2011, 77, 295-302.	1.1	21
28	Enrichment of PGE through interaction of evolved boninitic magmas with early formed cumulates in a gabbro–breccia zone of the Mesoarchean Nuasahi massif (eastern India). Mineralium Deposita, 2010, 45, 69-91.	4.1	38
29	Compositional variations in the Mesoarchean chromites of the Nuggihalli schist belt, Western Dharwar Craton (India): potential parental melts and implications for tectonic setting. Contributions To Mineralogy and Petrology, 2010, 160, 865-885.	3.1	110
30	PGE geochemistry of low-Ti high-Mg siliceous mafic rocks within the Archaean Central Indian Bastar Craton: implications for magma fractionation. Mineralogy and Petrology, 2010, 98, 329-345.	1.1	14
31	Advances in the understanding of chromitite deposits. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2009, 118, 85-85.	0.8	0
32	Chromite and PGE deposits of mesoarchaean ultramafic-mafic suites within the greenstone belts of the Singhbhum craton, India: Implications for mantle heterogeneity and tectonic setting. Journal of the Geological Society of India, 2009, 73, 36-51.	1.1	37
33	Origin of the UG2 chromitite layer, Bushveld Complex. Journal of Petrology, 2007, 48, 495-510.	2.8	182
34	Os isotope systematics of mesoarchean chromitite-PGE deposits in the Singhbhum Craton (India): Implications for the evolution of lithospheric mantle. Chemical Geology, 2007, 244, 391-408.	3.3	57
35	The genesis of Archaean chromitites from the Nuasahi and Sukinda massifs in the Singhbhum Craton, India. Precambrian Research, 2006, 148, 45-66.	2.7	157
36	PGE AND Ag MINERALIZATION IN A BRECCIA ZONE OF THE PRECAMBRIAN NUASAHI ULTRAMAFIC-MAFIC COMPLEX, ORISSA, INDIA. Canadian Mineralogist, 2001, 39, 979-996.	1.0	56

#	Article	IF	CITATIONS
37	Platinum-group minerals from the Nuasahi ultramafic-mafic complex, Orissa, India. Mineralogical Magazine, 1997, 61, 902-906.	1.4	33
38	Stichtite [Mg6Cr2(OH)16CO3·4H2O] in Nausahi ultramafites, Orissa, India - its transformation at elevated temperatures. Mineralogical Magazine, 1996, 60, 836-840.	1.4	20