
Rob Leurs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7829154/publications.pdf Version: 2024-02-01

PORLEURS

#	Article	IF	CITATIONS
1	International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacological Reviews, 2015, 67, 601-655.	16.0	457
2	The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nature Reviews Drug Discovery, 2005, 4, 107-120.	46.4	431
3	Evaluation of Histamine H ₁ -, H ₂ -, and H ₃ -Receptor Ligands at the Human Histamine H ₄ Receptor: Identification of 4-Methylhistamine as the First Potent and Selective H ₄ Receptor Agonist. Journal of Pharmacology and Experimental Therapeutics, 2005. 314. 1310-1321.	2.5	280
4	Histamine H ₁ -Receptor Activation of Nuclear Factor-κB: Roles for GÎ2γ- and Gα _{q/11} -Subunits in Constitutive and Agonist-Mediated Signaling. Molecular Pharmacology, 2001, 60, 1133-1142.	2.3	249
5	KLIFS: A Knowledge-Based Structural Database To Navigate Kinase–Ligand Interaction Space. Journal of Medicinal Chemistry, 2014, 57, 249-277.	6.4	243
6	Constitutive Signaling of the Human Cytomegalovirus-encoded Chemokine Receptor US28. Journal of Biological Chemistry, 2001, 276, 1133-1137.	3.4	222
7	Pharmacological modulation of chemokine receptor function. British Journal of Pharmacology, 2012, 165, 1617-1643.	5.4	217
8	Keynote review: Histamine H3 receptor antagonists reach out for the clinic. Drug Discovery Today, 2005, 10, 1613-1627.	6.4	206
9	CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20565-20570.	7.1	202
10	Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proceedings of the United States of America, 2006, 103, 13068-13073.	7.1	201
11	The histamine H receptor as a new therapeutic target for inflammation. Trends in Pharmacological Sciences, 2005, 26, 462-9.	8.7	189
12	Crystal Structure-Based Virtual Screening for Fragment-like Ligands of the Human Histamine H ₁ Receptor. Journal of Medicinal Chemistry, 2011, 54, 8195-8206.	6.4	189
13	Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discovery Today, 2009, 14, 630-646.	6.4	176
14	Pharmacogenomic and Structural Analysis of Constitutive G Protein–Coupled Receptor Activity. Annual Review of Pharmacology and Toxicology, 2007, 47, 53-87.	9.4	169
15	Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discovery Today: Technologies, 2010, 7, e157-e162.	4.0	167
16	Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discovery Today, 2017, 22, 896-911.	6.4	165
17	Fragment Based Design of New H ₄ Receptorâ^'Ligands with Anti-inflammatory Properties in Vivo. Journal of Medicinal Chemistry, 2008, 51, 2457-2467.	6.4	162
18	CXCR3-mediated chemotaxis of human T cells is regulated by a Gi- and phospholipase C–dependent pathway and not via activation of MEK/p44/p42 MAPK nor Akt/PI-3 kinase. Blood, 2003, 102, 1959-1965.	1.4	161

#	Article	IF	CITATIONS
19	Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function. Neuropharmacology, 2008, 55, 190-197.	4.1	157
20	Constitutive activity of the histamine H1 receptor reveals inverse agonism of histamine H1 receptor antagonists. European Journal of Pharmacology, 2000, 387, R5-R7.	3.5	148
21	Distinct Efficacies for Two Endogenous Ligands on a Single Cognate Gonadoliberin Receptor. FEBS Journal, 1997, 243, 134-140.	0.2	140
22	Human IP-9: A Keratinocyte-Derived High Affinity CXC-Chemokine Ligand for the IP-10/Mig Receptor (CXCR3)1. Journal of Investigative Dermatology, 1999, 112, 716-722.	0.7	140
23	Chemical Insights in the Concept of Hybrid Drugs:Â The Antitumor Effect of Nitric Oxide-Donating Aspirin Involves A Quinone Methide but Not Nitric Oxide nor Aspirin. Journal of Medicinal Chemistry, 2007, 50, 2424-2431.	6.4	140
24	Molecular and biochemical pharmacology of the histamine H ₄ receptor. British Journal of Pharmacology, 2009, 157, 14-23.	5.4	140
25	Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends in Biochemical Sciences, 1998, 23, 418-422.	7.5	139
26	The Human Cytomegalovirus–Encoded Chemokine Receptor US28 Promotes Angiogenesis and Tumor Formation via Cyclooxygenase-2. Cancer Research, 2009, 69, 2861-2869.	0.9	139
27	Marked changes in signal transduction upon heteromerization of dopamine D ₁ and histamine H ₃ receptors. British Journal of Pharmacology, 2009, 157, 64-75.	5.4	138
28	KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Research, 2016, 44, D365-D371.	14.5	132
29	Characterization of the Histamine H4Receptor Binding Site. Part 1. Synthesis and Pharmacological Evaluation of Dibenzodiazepine Derivatives. Journal of Medicinal Chemistry, 2006, 49, 4512-4516.	6.4	122
30	Histamine downregulates monocyte CCL2 production through the histamine H4 receptor. Journal of Allergy and Clinical Immunology, 2007, 120, 300-307.	2.9	115
31	Synthesis and QSAR of Quinazoline Sulfonamides As Highly Potent Human Histamine H ₄ Receptor Inverse Agonists. Journal of Medicinal Chemistry, 2010, 53, 2390-2400.	6.4	113
32	Antiinflammatory and antinociceptive effects of the selective histamine H4-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. European Journal of Pharmacology, 2007, 563, 240-244.	3.5	112
33	Mutational Analysis of the Antagonist-binding Site of the Histamine H1 Receptor. Journal of Biological Chemistry, 1999, 274, 29994-30000.	3.4	111
34	Molecular aspects of the histamine H3 receptor. Biochemical Pharmacology, 2007, 73, 1195-1204.	4.4	105
35	The Carboxyl Terminus of Human Cytomegalovirus-encoded 7 Transmembrane Receptor US28 Camouflages Agonism by Mediating Constitutive Endocytosis. Journal of Biological Chemistry, 2003, 278, 19473-19482.	3.4	104
36	Synthesis and structure–activity relationships of indole and benzimidazole piperazines as histamine H4 receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5251-5256.	2.2	103

Rob Leurs

#	Article	IF	CITATIONS
37	The Epstein-Barr Virus BILF1 Gene Encodes a G Protein-Coupled Receptor That Inhibits Phosphorylation of RNA-Dependent Protein Kinase. Journal of Virology, 2005, 79, 441-449.	3.4	100
38	A New Potent and Selective Histamine H3 Receptor Agonist, 4-(1H-imidazol-4-ylmethyl)piperidine. Journal of Medicinal Chemistry, 1994, 37, 332-333.	6.4	98
39	Pivotal Role for the Cytoplasmic Carboxyl-Terminal Tail of a Nonmammalian Gonadotropin-Releasing Hormone Receptor in Cell Surface Expression, Ligand Binding, and Receptor Phosphorylation and Internalization. Molecular Pharmacology, 1999, 56, 1229-1237.	2.3	98
40	Human Inflammatory Dendritic Epidermal Cells Express a Functional Histamine H4 Receptor. Journal of Investigative Dermatology, 2008, 128, 1696-1703.	0.7	96
41	The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. Journal of Clinical Investigation, 2010, 120, 3969-3978.	8.2	96
42	Two Gonadotropin-Releasing Hormone Receptors in the African Catfish: No Differences in Ligand Selectivity, but Differences in Tissue Distribution. Endocrinology, 2002, 143, 4673-4682.	2.8	95
43	Histamine H3receptor ligands break ground in a remarkable plethora of therapeutic areas. Expert Opinion on Investigational Drugs, 2007, 16, 967-985.	4.1	95
44	Structural Analysis of Chemokine Receptor–Ligand Interactions. Journal of Medicinal Chemistry, 2017, 60, 4735-4779.	6.4	94
45	Kaposi's Sarcoma-Associated Herpesvirus-Encoded G Protein-Coupled Receptor ORF74 Constitutively Activates p44/p42 MAPK and Akt via G i and Phospholipase C-Dependent Signaling Pathways. Journal of Virology, 2002, 76, 1744-1752.	3.4	93
46	Cloning and tissue expression of a rat histamine H2-receptor gene. Biochemical and Biophysical Research Communications, 1991, 179, 1470-1478.	2.1	91
47	The Landscape of Atypical and Eukaryotic Protein Kinases. Trends in Pharmacological Sciences, 2019, 40, 818-832.	8.7	87
48	Discovery of <i>S</i> -(2-Guanidylethyl)-isothiourea (VUF 8430) as a Potent Nonimidazole Histamine H ₄ Receptor Agonist. Journal of Medicinal Chemistry, 2006, 49, 6650-6651.	6.4	86
49	Ubiquitination of CXCR7 Controls Receptor Trafficking. PLoS ONE, 2012, 7, e34192.	2.5	86
50	Constitutive Signaling of the Human Cytomegalovirus-encoded Receptor UL33 Differs from That of Its Rat Cytomegalovirus Homolog R33 by Promiscuous Activation of G Proteins of the Gq, Gi, and Gs Classes. Journal of Biological Chemistry, 2003, 278, 50010-50023.	3.4	85
51	Linking agonist binding to histamine H1 receptor activation. Nature Chemical Biology, 2005, 1, 98-103.	8.0	85
52	Discovery of Quinazolines as Histamine H4 Receptor Inverse Agonists Using a Scaffold Hopping Approach. Journal of Medicinal Chemistry, 2008, 51, 7855-7865.	6.4	85
53	The Epstein-Barr Virus-encoded G Protein-coupled Receptor BILF1 Hetero-oligomerizes with Human CXCR4, Scavenges Gαi Proteins, and Constitutively Impairs CXCR4 Functioning. Journal of Biological Chemistry, 2010, 285, 29632-29641.	3.4	85
54	Identification of the First Nonpeptidergic Inverse Agonist for a Constitutively Active Viral-encoded G Protein-coupled Receptor. Journal of Biological Chemistry, 2003, 278, 5172-5178.	3.4	82

#	Article	IF	CITATIONS
55	The Rat Cytomegalovirus R33-Encoded G Protein-Coupled Receptor Signals in a Constitutive Fashion. Journal of Virology, 2002, 76, 1328-1338.	3.4	79
56	Function-specific virtual screening for GPCR ligands using a combined scoring method. Scientific Reports, 2016, 6, 28288.	3.3	79
57	Use of Acetylcholine Binding Protein in the Search for Novel α7 Nicotinic Receptor Ligands. In Silico Docking, Pharmacological Screening, and X-ray Analysis. Journal of Medicinal Chemistry, 2009, 52, 2372-2383.	6.4	78
58	Domain Swapping in the Human Histamine H ₁ Receptor. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 131-138.	2.5	77
59	En route to new blockbuster anti-histamines: surveying the offspring of the expanding histamine receptor family. Trends in Pharmacological Sciences, 2011, 32, 250-257.	8.7	77
60	Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases?. Nature Reviews Drug Discovery, 2014, 13, 123-139.	46.4	76
61	Pharmacological characterization of the human histamine H ₂ receptor stably expressed in Chinese hamster ovary cells. British Journal of Pharmacology, 1994, 112, 847-854.	5.4	75
62	Towards Smallâ€Molecule CXCR3 Ligands with Clinical Potential. ChemMedChem, 2008, 3, 861-872.	3.2	75
63	HCMV-encoded G-protein-coupled receptors as constitutively active modulators of cellular signaling networks. Trends in Pharmacological Sciences, 2006, 27, 56-63.	8.7	74
64	Fragment Growing Induces Conformational Changes in Acetylcholine-Binding Protein: A Structural and Thermodynamic Analysis. Journal of the American Chemical Society, 2011, 133, 5363-5371.	13.7	72
65	CC and CX3C Chemokines Differentially Interact with the N Terminus of the Human Cytomegalovirus-encoded US28 Receptor. Journal of Biological Chemistry, 2005, 280, 3275-3285.	3.4	71
66	A Selective Human H4-Receptor Agonist:Â (â^')-2-Cyano-1-methyl-3-{(2R,5R)-5- [1H-imidazol-4(5)-yl]tetrahydrofuran-2-yl}methylguanidine. Journal of Medicinal Chemistry, 2003, 46, 3162-3165.	6.4	65
67	ldentification of 4-(1 <i>H</i> -Imidazol-4(5)-ylmethyl)pyridine (Immethridine) as a Novel, Potent, and Highly Selective Histamine H ₃ Receptor Agonist. Journal of Medicinal Chemistry, 2004, 47, 2414-2417.	6.4	65
68	Molecular cloning and characterization of an invertebrate homologue of a neuropeptide Y receptor. European Journal of Neuroscience, 1998, 10, 3409-3416.	2.6	64
69	Virtual Fragment Screening: Discovery of Histamine H ₃ Receptor Ligands Using Ligand-Based and Protein-Based Molecular Fingerprints. Journal of Chemical Information and Modeling, 2012, 52, 3308-3324.	5.4	64
70	An atom efficient and solvent-free synthesis of structurally diverse amides using microwaves. Tetrahedron Letters, 2005, 46, 3751-3754.	1.4	63
71	Discovery of Naturally Occurring Splice Variants of the Rat Histamine H3Receptor That Act as Dominant-Negative Isoforms. Molecular Pharmacology, 2006, 69, 1194-1206.	2.3	62
72	Oligomerization of Recombinant and Endogenously Expressed Human Histamine H4 Receptors. Molecular Pharmacology, 2006, 70, 604-615.	2.3	62

#	Article	IF	CITATIONS
73	Delineation of Agonist Binding to the Human Histamine H4 Receptor Using Mutational Analysis, Homology Modeling, and ab Initio Calculations. Journal of Chemical Information and Modeling, 2008, 48, 1455-1463.	5.4	62
74	Cloning and characterization of dominant negative splice variants of the human histamine H4 receptor. Biochemical Journal, 2008, 414, 121-131.	3.7	61
75	Clobenpropit (VUF-9153), a new histamine H3 receptor antagonist, inhibits electrically induced convulsions in mice. European Journal of Pharmacology, 1994, 260, 23-28.	3.5	60
76	The constitutive activity of the virally encoded chemokine receptor US28 accelerates glioblastoma growth. Oncogene, 2018, 37, 4110-4121.	5.9	59
77	Mineral Dust Exposure and Free Radical-Mediated Lung Damage. Experimental Lung Research, 1990, 16, 41-55.	1.2	58
78	Evaluation of the receptor selectivity of the H3 receptor antagonists, iodophenpropit and thioperamide: an interaction with the 5-HT3 receptor revealed. British Journal of Pharmacology, 1995, 116, 2315-2321.	5.4	58
79	The Akt/CSKâ€3β axis as a new signaling pathway of the histamine H ₃ receptor. Journal of Neurochemistry, 2007, 103, 248-258.	3.9	58
80	A Structural Insight into the Reorientation of Transmembrane Domains 3 and 5 during Family A G Protein-Coupled Receptor Activation. Molecular Pharmacology, 2011, 79, 262-269.	2.3	58
81	Noncompetitive Antagonism and Inverse Agonism as Mechanism of Action of Nonpeptidergic Antagonists at Primate and Rodent CXCR3 Chemokine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 544-555.	2.5	57
82	Differences in Structure–Function Relations between Nonmammalian and Mammalian Gonadotropin-Releasing Hormone Receptors. Biochemical and Biophysical Research Communications, 1997, 238, 517-522.	2.1	56
83	Constitutive Activity and Structural Instability of the Wildâ€Type Human H ₂ Receptor. Journal of Neurochemistry, 1998, 71, 799-807.	3.9	56
84	Major advances in the development of histamine H4 receptor ligands. Drug Discovery Today, 2009, 14, 745-753.	6.4	56
85	Pharmacological characterization of the new histamine H ₄ receptor agonist VUF 8430. British Journal of Pharmacology, 2009, 157, 34-43.	5.4	56
86	Effect of the histamine H3-antagonist clobenpropit on spatial memory deficits induced by MK-801 as evaluated by radial maze in Sprague–Dawley rats. Behavioural Brain Research, 2004, 151, 287-293.	2.2	54
87	Molecular Determinants of Ligand Binding to H ₄ R Species Variants. Molecular Pharmacology, 2010, 77, 734-743.	2.3	54
88	Synthesis, modeling and functional activity of substituted styrene-amides as small-molecule CXCR7 agonists. European Journal of Medicinal Chemistry, 2012, 51, 184-192.	5.5	54
89	PDEStrIAn: A Phosphodiesterase Structure and Ligand Interaction Annotated Database As a Tool for Structure-Based Drug Design. Journal of Medicinal Chemistry, 2016, 59, 7029-7065.	6.4	54
90	Aminergic GPCR–Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. Journal of Medicinal Chemistry, 2019, 62, 3784-3839.	6.4	53

#	Article	IF	CITATIONS
91	Constitutively active Gq/11-coupled Receptors Enable Signaling by Co-expressed Gi/o-coupled Receptors. Journal of Biological Chemistry, 2004, 279, 5152-5161.	3.4	52
92	Viral hijacking of human receptors through heterodimerization. Biochemical and Biophysical Research Communications, 2008, 377, 93-97.	2.1	52
93	Opioids activate brain analgesic circuits through cytochrome P450/epoxygenase signaling. Nature Neuroscience, 2010, 13, 284-286.	14.8	52
94	Study of the Interaction Between Aryloxypropanolamines and Asn386 in Helix VII of the Human 5-Hydroxytryptamine1A Receptor. Molecular Pharmacology, 1997, 51, 889-896.	2.3	51
95	Large-scale overproduction, functional purification and ligand affinities of the His-tagged human histamine H1 receptor. FEBS Journal, 2004, 271, 2636-2646.	0.2	51
96	Analysis of Multiple Histamine H ₄ Receptor Compound Classes Uncovers Gα _i Protein- and β-Arrestin2-Biased Ligands. Molecular Pharmacology, 2012, 82, 1174-1182.	2.3	51
97	Discovery of Novel <i>Trypanosoma brucei</i> Phosphodiesterase B1 Inhibitors by Virtual Screening against the Unliganded TbrPDEB1 Crystal Structure. Journal of Medicinal Chemistry, 2013, 56, 2087-2096.	6.4	51
98	The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS Journal, 2005, 272, 4163-4177.	4.7	50
99	Phenylalanine 169 in the Second Extracellular Loop of the Human Histamine H ₄ Receptor Is Responsible for the Difference in Agonist Binding between Human and Mouse H ₄ Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 88-96.	2.5	50
100	Molecular Determinants of Ligand Binding Modes in the Histamine H4Receptor: Linking Ligand-Based Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) Models to in Silico Guided Receptor Mutagenesis Studies. Journal of Medicinal Chemistry, 2011, 54, 8136-8147.	6.4	50
101	Several down, a few to go: histamine H ₃ receptor ligands making the final push towards the market?. Expert Opinion on Investigational Drugs, 2011, 20, 1629-1648.	4.1	50
102	Catechol Pyrazolinones as Trypanocidals: Fragment-Based Design, Synthesis, and Pharmacological Evaluation of Nanomolar Inhibitors of Trypanosomal Phosphodiesterase B1. Journal of Medicinal Chemistry, 2012, 55, 8745-8756.	6.4	50
103	The clinical pharmacology of non-sedating antihistamines. , 2017, 178, 148-156.		50
104	Synthesis and Characterization of a Bidirectional Photoswitchable Antagonist Toolbox for Real-Time GPCR Photopharmacology. Journal of the American Chemical Society, 2018, 140, 4232-4243.	13.7	50
105	H3 receptor gene is cloned at last. Trends in Pharmacological Sciences, 2000, 21, 11-12.	8.7	49
106	Mutational analysis of the histamine H1-receptor binding pocket of histaprodifens. European Journal of Pharmacology, 2004, 487, 55-63.	3.5	49
107	An 80-Amino Acid Deletion in the Third Intracellular Loop of a Naturally Occurring Human Histamine H ₃ Isoform Confers Pharmacological Differences and Constitutive Activity. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 888-898.	2.5	49
108	The histamine H3 receptor antagonist clobenpropit enhances GABA release to protect against NMDA-induced excitotoxicity through the cAMP/protein kinase A pathway in cultured cortical neurons. European Journal of Pharmacology, 2007, 563, 117-123.	3.5	49

#	Article	IF	CITATIONS
109	Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Journal of Chemical Information and Modeling, 2015, 55, 1045-1061.	5.4	49
110	Modulators of CXCR4 and CXCR7/ACKR3 Function. Molecular Pharmacology, 2019, 96, 737-752.	2.3	49
111	Development of a Pharmacophore Model for Histamine H3Receptor Antagonists, Using the Newly Developed Molecular Modeling Program SLATE. Journal of Medicinal Chemistry, 2001, 44, 1666-1674.	6.4	48
112	Pharmacological Differences between Human and Guinea Pig Histamine H ₁ Receptors: Asn ⁸⁴ (2.61) as Key Residue within an Additional Binding Pocket in the H ₁ Receptor. Molecular Pharmacology, 2005, 67, 1045-1052.	2.3	48
113	Activation of peripheral and spinal histamine H3 receptors inhibits formalin-induced inflammation and nociception, respectively. Pharmacology Biochemistry and Behavior, 2007, 88, 122-129.	2.9	48
114	Development of novel fluorescent histamine H1-receptor antagonists to study ligand-binding kinetics in living cells. Scientific Reports, 2018, 8, 1572.	3.3	48
115	N-Substituted Piperidinyl Alkyl Imidazoles:Â Discovery of Methimepip as a Potent and Selective Histamine H3Receptor Agonist. Journal of Medicinal Chemistry, 2005, 48, 2100-2107.	6.4	47
116	From Heptahelical Bundle to Hits from the Haystack. Methods in Enzymology, 2013, 522, 279-336.	1.0	47
117	Modelling and mutation studies on the histamine H1-receptor agonist binding site reveal different binding modes for H1-agonists: Asp116 (TM3) has a constitutive role in receptor stimulation. Journal of Computer-Aided Molecular Design, 1995, 9, 319-330.	2.9	46
118	Differential Activation of Murine Herpesvirus 68- and Kaposi's Sarcoma-Associated Herpesvirus-Encoded ORF74 G Protein-Coupled Receptors by Human and Murine Chemokines. Journal of Virology, 2004, 78, 3343-3351.	3.4	46
119	Pharmacological characterization of a smallâ€molecule agonist for the chemokine receptor CXCR3. British Journal of Pharmacology, 2012, 166, 898-911.	5.4	44
120	Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Frontiers in Pharmacology, 2015, 6, 40.	3.5	43
121	Molecular interaction fingerprint approaches for GPCR drug discovery. Current Opinion in Pharmacology, 2016, 30, 59-68.	3.5	43
122	GPCR Proteomics: Mass Spectrometric and Functional Analysis of Histamine H ₁ Receptor after Baculovirus-Driven and <i>in Vitro</i> Cell Free Expression. Journal of Proteome Research, 2008, 7, 621-629.	3.7	42
123	Activation of the histaminergic H ₃ receptor induces phosphorylation of the Akt/GSKâ€3β pathway in cultured cortical neurons and protects against neurotoxic insults. Journal of Neurochemistry, 2009, 110, 1469-1478.	3.9	42
124	[³ H]â€ŧhioperamide as a radioligand for the histamine H ₃ receptor in rat cerebral cortex. British Journal of Pharmacology, 1996, 118, 2045-2052.	5.4	41
125	Synthesis and Structureâ [^] Activity Relationships of Conformationally Constrained Histamine H3 Receptor Agonists. Journal of Medicinal Chemistry, 2003, 46, 5445-5457.	6.4	41
126	Role of H3-Receptor-Mediated Signaling in Anxiety and Cognition in Wild-Type and Apoe–/– Mice. Neuropsychopharmacology, 2004, 29, 441-449.	5.4	40

#	Article	IF	CITATIONS
127	Histamine protects against NMDA-induced necrosis in cultured cortical neurons through H2receptor/cyclic AMP/protein kinase A and H3receptor/GABA release pathways. Journal of Neurochemistry, 2006, 96, 1390-1400.	3.9	40
128	Solid-State NMR Evidence for a Protonation Switch in the Binding Pocket of the H1 Receptor upon Binding of the Agonist Histamine. Journal of the American Chemical Society, 2007, 129, 867-872.	13.7	40
129	Neutralizing Nanobodies Targeting Diverse Chemokines Effectively Inhibit Chemokine Function. Journal of Biological Chemistry, 2013, 288, 25173-25182.	3.4	40
130	Synthesis and Structureâ `Activity Relationship of the First Nonpeptidergic Inverse Agonists for the Human Cytomegalovirus Encoded Chemokine Receptor US28. Journal of Medicinal Chemistry, 2005, 48, 6461-6471.	6.4	39
131	Triazole Ligands Reveal Distinct Molecular Features That Induce Histamine H ₄ Receptor Affinity and Subtly Govern H ₄ /H ₃ Subtype Selectivity. Journal of Medicinal Chemistry, 2011, 54, 1693-1703.	6.4	39
132	Histamine H1-receptor-mediated cyclic GMP production in guinea-pig lung tissue is an l-arginine-dependent process. Biochemical Pharmacology, 1991, 42, 271-277.	4.4	38
133	Modulation of forskolinâ€mediated adenylyl cyclase activation by constitutively active G _s â€coupled receptors. FEBS Letters, 1997, 419, 171-174.	2.8	38
134	Nonpeptidergic Allosteric Antagonists Differentially Bind to the CXCR2 Chemokine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 783-790.	2.5	38
135	Homologs of Histamine as Histamine H3 Receptor Antagonists: A New Potent and Selective H3 Antagonist, 4(5)-(5-Aminopentyl)-1H-imidazole. Journal of Medicinal Chemistry, 1995, 38, 266-271.	6.4	37
136	Synthesis and pharmacological characterization of novel inverse agonists acting on the viral-encoded chemokine receptor US28. Bioorganic and Medicinal Chemistry, 2006, 14, 7213-7230.	3.0	37
137	Brain penetration of the histamine H3 receptor antagonists thioperamide and clobenpropit in rat and mouse, determined with ex vivo [1251]iodophenpropit binding. Brain Research, 1996, 743, 178-183.	2.2	36
138	Online Fluorescence Enhancement Assay for the Acetylcholine Binding Protein with Parallel Mass Spectrometric Identification. Journal of Medicinal Chemistry, 2010, 53, 4720-4730.	6.4	36
139	G proteinâ€coupled receptors: walking handâ€inâ€hand, talking handâ€inâ€hand?. British Journal of Pharmacology, 2011, 163, 246-260.	5.4	36
140	The role of cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines in manipulation of and evasion from the immune system. Journal of Clinical Virology, 2001, 23, 43-55.	3.1	35
141	Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT ₃ Receptor Ligands. Journal of Medicinal Chemistry, 2012, 55, 8603-8614.	6.4	35
142	β-Arrestin Recruitment and G Protein Signaling by the Atypical Human Chemokine Decoy Receptor CCX-CKR. Journal of Biological Chemistry, 2013, 288, 7169-7181.	3.4	35
143	Constitutive ß-Catenin Signaling by the Viral Chemokine Receptor US28. PLoS ONE, 2012, 7, e48935.	2.5	35
144	Targeting a Subpocket in <i>Trypanosoma brucei</i> Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity. Journal of Medicinal Chemistry, 2018, 61, 3870-3888.	6.4	34

#	Article	IF	CITATIONS
145	The Emerging Role of the Histamine H4 Receptor in Anti-inflammatory Therapy. Current Topics in Medicinal Chemistry, 2006, 6, 1365-1373.	2.1	34
146	Rapid desensitization of the histamine H2 receptor on the human monocytic cell line U937. European Journal of Pharmacology, 1994, 288, 17-25.	2.6	33
147	Chemokine-Directed Trafficking of Receptor Stimulus to Different G Proteins: Selective Inducible and Constitutive Signaling by Human Herpesvirus 6-Encoded Chemokine Receptor U51. Molecular Pharmacology, 2006, 69, 888-898.	2.3	33
148	Structure-based virtual screening for fragment-like ligands of the G protein-coupled histamine H ₄ receptor. MedChemComm, 2015, 6, 1003-1017.	3.4	33
149	Fluorescent ligands for the histamine H2 receptor: synthesis and preliminary characterization. Bioorganic and Medicinal Chemistry, 2004, 12, 6495-6503.	3.0	32
150	Synthesis and structure–activity relationship of 3-phenyl-3H-quinazolin-4-one derivatives as CXCR3 chemokine receptor antagonists. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2910-2913.	2.2	32
151	Surface Plasmon Resonance Biosensor Based Fragment Screening Using Acetylcholine Binding Protein Identifies Ligand Efficiency Hot Spots (LE Hot Spots) by Deconstruction of Nicotinic Acetylcholine Receptor α7 Ligands. Journal of Medicinal Chemistry, 2010, 53, 7192-7201.	6.4	32
152	Homogeneous, Real-Time NanoBRET Binding Assays for the Histamine H ₃ and H ₄ Receptors on Living Cells. Molecular Pharmacology, 2018, 94, 1371-1381.	2.3	32
153	Histaminergic Agonists and Antagonists Recent Developments. Advances in Drug Research, 1991, 20, 217-304.	0.8	32
154	Fragment library screening reveals remarkable similarities between the G protein-coupled receptor histamine H4 and the ion channel serotonin 5-HT3A. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5460-5464.	2.2	31
155	The Target Residence Time of Antihistamines Determines Their Antagonism of the G Protein-Coupled Histamine H1 Receptor. Frontiers in Pharmacology, 2017, 8, 667.	3.5	31
156	Evaluation of [18 F]VUF 5000 as a potential PET ligand for brain imaging of the histamine H 3 receptor. Bioorganic and Medicinal Chemistry, 1999, 7, 1761-1767.	3.0	30
157	Effects of clobenpropit on pentylenetetrazole-kindled seizures in rats. European Journal of Pharmacology, 2003, 482, 169-175.	3.5	30
158	Synthesis and Pharmacological Identification of Neutral Histamine H1-Receptor Antagonists. Journal of Medicinal Chemistry, 2003, 46, 5812-5824.	6.4	30
159	Furin Is a Chemokine-modifying Enzyme. Journal of Biological Chemistry, 2004, 279, 13402-13411.	3.4	30
160	Clobenpropit analogs as dual activity ligands for the histamine H3 and H4 receptors: Synthesis, pharmacological evaluation, and cross-target QSAR studies. Bioorganic and Medicinal Chemistry, 2009, 17, 3987-3994.	3.0	30
161	Identification of novel allosteric nonpeptidergic inhibitors of the human cytomegalovirus-encoded chemokine receptor US28. Bioorganic and Medicinal Chemistry, 2010, 18, 675-688.	3.0	30
162	Small and colorful stones make beautiful mosaics: fragment-based chemogenomics. Drug Discovery Today, 2013, 18, 323-330.	6.4	30

#	Article	IF	CITATIONS
163	From Three-Dimensional GPCR Structure to Rational Ligand Discovery. Advances in Experimental Medicine and Biology, 2014, 796, 129-157.	1.6	30
164	Cloning and pharmacological characterization of the dog histamine H4 receptor. European Journal of Pharmacology, 2008, 592, 26-32.	3.5	29
165	Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors. Bioorganic and Medicinal Chemistry, 2011, 19, 6107-6119.	3.0	29
166	Chemical Subtleties in Small-Molecule Modulation of Peptide Receptor Function: The Case of CXCR3 Biaryl-Type Ligands. Journal of Medicinal Chemistry, 2012, 55, 10572-10583.	6.4	29
167	Synthesis and evaluation of analogs of the phenylpyridazinone NPD-001 as potent trypanosomal TbrPDEB1 phosphodiesterase inhibitors and in vitro trypanocidals. Bioorganic and Medicinal Chemistry, 2016, 24, 1573-1581.	3.0	29
168	Photoswitching the Efficacy of a Smallâ€Molecule Ligand for a Peptidergic GPCR: from Antagonism to Agonism. Angewandte Chemie - International Edition, 2018, 57, 11608-11612.	13.8	29
169	Two Distinct Pathways for Histamine H2 Receptor Down-regulation. Journal of Biological Chemistry, 1996, 271, 7574-7582.	3.4	28
170	Identification of a Novel Allosteric Binding Site in the CXCR2 Chemokine Receptor. Molecular Pharmacology, 2011, 80, 1108-1118.	2.3	28
171	A Prospective Cross-Screening Study on G-Protein-Coupled Receptors: Lessons Learned in Virtual Compound Library Design. Journal of Medicinal Chemistry, 2012, 55, 5311-5325.	6.4	28
172	Strainâ€dependent effects of the histamine H ₄ receptor antagonist JNJ7777120 in a murine model of acute skin inflammation. Experimental Dermatology, 2012, 21, 32-37.	2.9	28
173	Design and pharmacological characterization of <scp>VUF14480</scp> , a covalent partial agonist that interacts with cysteine 98 ^{3.36} of the human histamine <scp>H₄</scp> receptor. British Journal of Pharmacology, 2013, 170, 89-100.	5.4	28
174	Combined CXCR3/CXCR4 measurements are of high prognostic value in chronic lymphocytic leukemia due to negative co-operativity of the receptors. Haematologica, 2016, 101, e99-e102.	3.5	28
175	The long duration of action of the second generation antihistamine bilastine coincides with its long residence time at the histamine H1 receptor. European Journal of Pharmacology, 2018, 838, 107-111.	3.5	28
176	New Analogs of Burimamide as Potent and Selective Histamine H3 Receptor Antagonists: The Effect of Chain Length Variation of the Alkyl Spacer and Modifications of the N-Thiourea Substituent. Journal of Medicinal Chemistry, 1995, 38, 2244-2250.	6.4	27
177	Pharmacological characterisation of the histamine H3 receptor in the rat hippocampus. Brain Research, 1998, 788, 179-186.	2.2	27
178	New high affinity H3 receptor agonists without a basic side chain. Bioorganic and Medicinal Chemistry, 2005, 13, 6309-6323.	3.0	27
179	Delineation of Receptor-Ligand Interactions at the Human Histamine H1 Receptor by a Combined Approach of Site-Directed Mutagenesis and Computational Techniques - or - How to Bind the H1 Receptor. Archiv Der Pharmazie, 2005, 338, 248-259.	4.1	27
180	A Gq/11-coupled Mutant Histamine H1 Receptor F435A Activated Solely by Synthetic Ligands (RASSL). Journal of Biological Chemistry, 2005, 280, 34741-34746.	3.4	27

#	Article	IF	CITATIONS
181	Label-free impedance responses of endogenous and synthetic chemokine receptor CXCR3 agonists correlate with Gi-protein pathway activation. Biochemical and Biophysical Research Communications, 2012, 419, 412-418.	2.1	27
182	Mapping histamine H4 receptor–ligand binding modes. MedChemComm, 2013, 4, 193-204.	3.4	27
183	A singleâ€point mutation (<scp>Ala280Val</scp>) in the third intracellular loop alters the signalling properties of the human histamine <scp>H₃</scp> receptor stably expressed in <scp>CHOâ€K1</scp> cells. British Journal of Pharmacology, 2013, 170, 127-135.	5.4	27
184	Development of a Conformational Histamine H ₃ Receptor Biosensor for the Synchronous Screening of Agonists and Inverse Agonists. ACS Sensors, 2020, 5, 1734-1742.	7.8	27
185	Helix 8 of the Viral Chemokine Receptor ORF74 Directs Chemokine Binding. Journal of Biological Chemistry, 2006, 281, 35327-35335.	3.4	26
186	A medicinal chemistry perspective on melting point: matched molecular pair analysis of the effects of simple descriptors on the melting point of drug-like compounds. MedChemComm, 2012, 3, 584.	3.4	26
187	Identification of Ligand Binding Hot Spots of the Histamine H ₁ Receptor following Structure-Based Fragment Optimization. Journal of Medicinal Chemistry, 2016, 59, 9047-9061.	6.4	26
188	High affinity, saturable [3H]mepyramine binding sites on rat liver plasma membrane do not represent histamine H1-receptors. Biochemical Pharmacology, 1989, 38, 2175-2180.	4.4	25
189	Identification of Overlapping but Differential Binding Sites for the High-Affinity CXCR3 Antagonists NBI-74330 and VUF11211. Molecular Pharmacology, 2014, 85, 116-126.	2.3	25
190	Chemokine Receptor Crystal Structures: What Can Be Learned from Them?. Molecular Pharmacology, 2019, 96, 765-777.	2.3	25
191	Characterization of the Binding Site of the Histamine H3 Receptor. 1. Various Approaches to the Synthesis of 2-(1H-Imidazol-4-yl)cyclopropylamine and Histaminergic Activity of (1R,2R)- and (1S,2S)-2-(1H-Imidazol-4-yl)- cyclopropylamine. Journal of Medicinal Chemistry, 1999, 42, 1115-1122.	6.4	24
192	Nanofractionation Spotter Technology for Rapid Contactless and High-Resolution Deposition of LC Eluent for Further Off-Line Analysis. Analytical Chemistry, 2011, 83, 125-132.	6.5	24
193	BRET-based β-arrestin2 recruitment to the histamine H 1 receptor for investigating antihistamine binding kinetics. Pharmacological Research, 2016, 111, 679-687.	7.1	24
194	Amselamine, a new selective histamine H2-receptor agonist. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 1913-1916.	2.2	23
195	Synthesis and Structure-Activity Relationships of 3H-Quinazolin-4-ones and 3H-Pyrido[2,3-d]pyrimidin-4-ones as CXCR3 receptor antagonists. Archiv Der Pharmazie, 2007, 340, 281-291.	4.1	23
196	4-Benzyl-1H-imidazoles with Oxazoline Termini as Histamine H3 Receptor Agonists. Journal of Medicinal Chemistry, 2008, 51, 2944-2953.	6.4	23
197	Constitutively Active Mutants of the Histamine H ₁ Receptor Suggest a Conserved Hydrophobic Asparagine-Cage That Constrains the Activation of Class A G Protein-Coupled Receptors. Molecular Pharmacology, 2008, 73, 94-103.	2.3	23
198	Fragment based lead discovery of small molecule inhibitors for the EPHA4 receptor tyrosine kinase. European Journal of Medicinal Chemistry, 2012, 47, 493-500.	5.5	23

#	Article	IF	CITATIONS
199	Ligand based design of novel histamine H4 receptor antagonists; fragment optimization and analysis of binding kinetics. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 461-467.	2.2	23
200	A novel series of histamine H4 receptor antagonists based on the pyrido[3,2-d]pyrimidine scaffold: Comparison of hERG binding and target residence time with PF-3893787. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2663-2670.	2.2	23
201	Fragment-Based Screening in Tandem with Phenotypic Screening Provides Novel Antiparasitic Hits. Journal of Biomolecular Screening, 2015, 20, 131-140.	2.6	23
202	A Photoswitchable Agonist for the Histamine H ₃ Receptor, a Prototypic Family A Gâ€Protein oupled Receptor. Angewandte Chemie - International Edition, 2019, 58, 4531-4535.	13.8	23
203	Platelet Adenylyl Cyclase Activity as a Biochemical Trait Marker for Predisposition to Alcoholism. Alcoholism: Clinical and Experimental Research, 1999, 23, 600-604.	2.4	22
204	A "locked-on,―constitutively active mutant of the adenosine A1 receptor. European Journal of Pharmacology, 2005, 510, 1-8.	3.5	22
205	Molecular Pharmacology of the Four Histamine Receptors. Advances in Experimental Medicine and Biology, 2010, 709, 11-19.	1.6	22
206	3D-e-Chem-VM: Structural Cheminformatics Research Infrastructure in a Freely Available Virtual Machine. Journal of Chemical Information and Modeling, 2017, 57, 115-121.	5.4	21
207	The human cytomegalovirus-encoded G protein–coupled receptor UL33 exhibits oncomodulatory properties. Journal of Biological Chemistry, 2019, 294, 16297-16308.	3.4	21
208	A Novel Phenylaminotetralin Radioligand Reveals a Subpopulation of Histamine H1Receptors. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 328-336.	2.5	20
209	Changes in hippocampal histamine receptors across the hibernation cycle in ground squirrels. Hippocampus, 2003, 13, 745-754.	1.9	20
210	CXCR3 antagonists: Quaternary ammonium salts equipped with biphenyl- and polycycloaliphatic-anchors. Bioorganic and Medicinal Chemistry, 2011, 19, 3384-3393.	3.0	20
211	Probe dependency in the determination of ligand binding kinetics at a prototypical G protein-coupled receptor. Scientific Reports, 2019, 9, 7906.	3.3	20
212	The effects of 4-hydroxy-2,3-trans-nonenal on β-adrenoceptors of rat lung membranes. Chemico-Biological Interactions, 1986, 59, 211-218.	4.0	19
213	Extracellular ATP elevates cytoplasmatic free Ca2+ in HeLa cells by the interaction with a 5′-nucleotide receptor. European Journal of Pharmacology, 1993, 247, 223-226.	2.6	19
214	Characterization of histamine H 3 receptors in mouse brain using the H 3 antagonist [125 I]iodophenpropit. Naunyn-Schmiedeberg's Archives of Pharmacology, 2000, 362, 60-67.	3.0	19
215	Improgan antinociception does not require neuronal histamine or histamine receptors. Brain Research, 2003, 974, 146-152.	2.2	19
216	A Third Life for Burimamide: Discovery and Characterization of a Novel Class of Nonâ€Opioid Analgesics Derived from Histamine Antagonists. Annals of the New York Academy of Sciences, 2000, 909, 25-40.	3.8	19

#	Article	IF	CITATIONS
217	Significance of N-Terminal Proteolysis of CCL14a to Activity on the Chemokine Receptors CCR1 and CCR5 and the Human Cytomegalovirus-Encoded Chemokine Receptor US28. Journal of Immunology, 2009, 183, 1229-1237.	0.8	19
218	Well characterized antihistamine 4 receptor antibodies contribute to current knowledge of the expression and biology of the human and murine histamine 4 receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 853-854.	3.0	19
219	Characterization of the Binding Site of the Histamine H3Receptor. 2. Synthesis, in Vitro Pharmacology, and QSAR of a Series of Monosubstituted Benzyl Analogues of Thioperamide. Journal of Medicinal Chemistry, 2000, 43, 1754-1761.	6.4	18
220	Recombinant Semliki Forest virus for over-expression and pharmacological characterisation of the histamine H2 receptor in mammalian cells. European Journal of Pharmacology, 2001, 427, 105-114.	3.5	18
221	High-Resolution Bioactivity Profiling of Mixtures toward the Acetylcholine Binding Protein Using a Nanofractionation Spotter Technology. Journal of Biomolecular Screening, 2011, 16, 917-924.	2.6	18
222	Homologous histamine H1 receptor desensitization results in reduction of H1 receptor agonist efficacy. European Journal of Pharmacology, 1991, 196, 319-322.	3.5	17
223	Absence of antinociceptive tolerance to improgan, a cimetidine analog, in rats. Brain Research, 1998, 814, 218-221.	2.2	17
224	Mutational analysis of the R33-encoded G protein-coupled receptor of rat cytomegalovirus: identification of amino acid residues critical for cellular localization and ligand-independent signalling. Journal of General Virology, 2004, 85, 897-909.	2.9	17
225	A Chemical Switch for the Modulation of the Functional Activity of Higher Homologues of Histamine on the Human Histamine H3Receptor:Â Effect of Various Substitutions at the Primary Amino Function. Journal of Medicinal Chemistry, 2006, 49, 2549-2557.	6.4	17
226	The Viral G Protein-Coupled Receptor ORF74 Hijacks β-Arrestins for Endocytic Trafficking in Response to Human Chemokines. PLoS ONE, 2015, 10, e0124486.	2.5	17
227	Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT ₃ A, Histamine H ₁ , and Histamine H ₄ Receptors. Journal of Chemical Information and Modeling, 2015, 55, 1030-1044.	5.4	17
228	3Dâ€eâ€Chem: Structural Cheminformatics Workflows for Computerâ€Aided Drug Discovery. ChemMedChem, 2018, 13, 614-626.	3.2	17
229	Binding of Clozapine Metabolites and Analogues to the Histamine H3 Receptor in Rat Brain Cortex. Archiv Der Pharmazie, 1996, 329, 413-416.	4.1	16
230	An efficient and information-rich biochemical method design for fragment library screening on ion channels. BioTechniques, 2010, 49, 822-829.	1.8	16
231	In Silico Veritas: The Pitfalls and Challenges of Predicting GPCR-Ligand Interactions. Pharmaceuticals, 2011, 4, 1196-1215.	3.8	16
232	Detailed structure–activity relationship of indolecarboxamides as H4 receptor ligands. European Journal of Medicinal Chemistry, 2012, 54, 660-668.	5.5	16
233	The single cyclic nucleotide-specific phosphodiesterase of the intestinal parasite Giardia lamblia represents a potential drug target. PLoS Neglected Tropical Diseases, 2017, 11, e0005891.	3.0	16
234	Herpesvirus-Encoded G Protein-Coupled Receptors as Modulators of Cellular Function. Molecular Pharmacology, 2009, 76, 692-701.	2.3	15

#	Article	IF	CITATIONS
235	The histamine H ₄ receptor as a new target for treatment of canine inflammatory skin diseases. Veterinary Dermatology, 2009, 20, 555-561.	1.2	15
236	Route to Prolonged Residence Time at the Histamine H ₁ Receptor: Growing from Desloratadine to Rupatadine. Journal of Medicinal Chemistry, 2019, 62, 6630-6644.	6.4	15
237	Optical control of Class A G protein-coupled receptors with photoswitchable ligands. Current Opinion in Pharmacology, 2022, 63, 102192.	3.5	15
238	Modulation of histamine H2 receptor signalling by G-protein-coupled receptor kinase 2 and 3. British Journal of Pharmacology, 2000, 131, 1707-1715.	5.4	14
239	A role for spinal, but not supraspinal, α2 adrenergic receptors in the actions of improgan, a powerful, non-opioid analgesic. Brain Research, 2001, 923, 12-19.	2.2	14
240	Chimaeric gonadotropin-releasing hormone (GnRH) peptides with improved affinity for the catfish (Clarias gariepinus) GnRH receptor. Biochemical Journal, 2002, 361, 515.	3.7	14
241	The collagen-breakdown product N-acetyl-Proline-Glycine-Proline (N-α-PGP) does not interact directly with human CXCR1 and CXCR2. European Journal of Pharmacology, 2010, 643, 29-33.	3.5	14
242	Pharmacological Characterization of [³ H]VUF11211, a Novel Radiolabeled Small-Molecule Inverse Agonist for the Chemokine Receptor CXCR3. Molecular Pharmacology, 2015, 87, 639-648.	2.3	14
243	Differential Role of Serines and Threonines in Intracellular Loop 3 and C-Terminal Tail of the Histamine H ₄ Receptor in β-Arrestin and G Protein-Coupled Receptor Kinase Interaction, Internalization, and Signaling. ACS Pharmacology and Translational Science, 2020, 3, 321-333.	4.9	14
244	Differences in structure—function relations between nonmammalian and mammalian GnRH receptors: what we have learnt from the African catfish GnRH receptor. Progress in Brain Research, 2002, 141, 87-93.	1.4	13
245	Antinociceptive activity of chemical congeners of improgan: Optimization of side chain length leads to the discovery of a new, potent, non-opioid analgesic. Neuropharmacology, 2006, 51, 447-456.	4.1	13
246	Histamine H3 Receptors Are Involved in the Protective Effect of Ghrelin against HCl-Induced Gastric Damage in Rats. Pharmacology, 2010, 86, 259-266.	2.2	13
247	Brain P450 epoxygenase activity is required for the antinociceptive effects of improgan, a nonopioid analgesic. Pain, 2011, 152, 878-887.	4.2	13
248	Agonist-dependent effects of mutations in the sphingosine-1-phosphate type 1 receptor. European Journal of Pharmacology, 2011, 667, 105-112.	3.5	13
249	Bispyrimidines as Potent Histamine H ₄ Receptor Ligands: Delineation of Structure–Activity Relationships and Detailed H ₄ Receptor Binding Mode. Journal of Medicinal Chemistry, 2013, 56, 4264-4276.	6.4	13
250	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors. Bioorganic and Medicinal Chemistry, 2019, 27, 3998-4012.	3.0	13
251	A toolbox of molecular photoswitches to modulate the CXCR3 chemokine receptor with light. Beilstein Journal of Organic Chemistry, 2019, 15, 2509-2523.	2.2	13
252	Molecular Determinants of Selective Agonist and Antagonist Binding to the Histamine H4 Receptor. Current Topics in Medicinal Chemistry, 2011, 11, 661-679.	2.1	13

#	Article	IF	CITATIONS
253	Molecular pharmacology of histamine H4 receptors. Frontiers in Bioscience - Landmark, 2012, 17, 2089.	3.0	12
254	Adhesion GPCRs in immunology. Biochemical Pharmacology, 2016, 114, 88-102.	4.4	12
255	Structure-based exploration and pharmacological evaluation of N-substituted piperidin-4-yl-methanamine CXCR4 chemokine receptor antagonists. European Journal of Medicinal Chemistry, 2019, 162, 631-649.	5.5	12
256	Discovery of a New Class of Nonâ€imidazole Oxazolineâ€Based Histamine H ₃ Receptor (H ₃ R) Inverse Agonists. ChemMedChem, 2009, 4, 1063-1068.	3.2	11
257	Development of a Profiling Strategy for Metabolic Mixtures by Combining Chromatography and Mass Spectrometry with Cell-Based GPCR Signaling. Journal of Biomolecular Screening, 2012, 17, 1329-1338.	2.6	11
258	Alkynamide phthalazinones as a new class of TbrPDEB1 inhibitors (Part 2). Bioorganic and Medicinal Chemistry, 2019, 27, 4013-4029.	3.0	11
259	Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules, 2021, 11, 555.	4.0	11
260	BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H1 Receptor-Mediated G Protein Activation, Signaling and Interactions with GRKs and β-Arrestins. International Journal of Molecular Sciences, 2022, 23, 3184.	4.1	11
261	Sensitization enhances the adenylyl cyclase responsiveness in alveolar macrophages. Biochemical Pharmacology, 1991, 42, 485-490.	4.4	10
262	Radiosynthesis and biodistribution of 123I-labeled antagonists of the histamine H3 receptor as potential SPECT ligands. Nuclear Medicine and Biology, 1999, 26, 651-659.	0.6	10
263	Selective histamine H3 and H4 receptor agonists exert opposite effects against the gastric lesions induced by HCl in the rat stomach. European Journal of Pharmacology, 2011, 669, 121-127.	3.5	10
264	Structure–Activity Relationships of Quinoxalineâ€Based 5â€HT ₃ A and 5â€HT ₃ AB Receptor‣elective Ligands. ChemMedChem, 2013, 8, 946-955.	3.2	10
265	The Future of Drug Development for Neglected Tropical Diseases: How the European Commission Can Continue to Make a Difference. Trends in Parasitology, 2017, 33, 581-583.	3.3	10
266	Screening of a PDE-focused library identifies imidazoles with in vitro and in vivo antischistosomal activity. International Journal for Parasitology: Drugs and Drug Resistance, 2019, 9, 35-43.	3.4	10
267	Identification of Key Structural Motifs Involved in 7 Transmembrane Signaling of Adhesion GPCRs. ACS Pharmacology and Translational Science, 2019, 2, 101-113.	4.9	10
268	Proper receptor signalling in a mutant catfish gonadotropin-releasing hormone receptor lacking the highly conserved Asp90 residue. FEBS Letters, 2001, 501, 131-134.	2.8	9
269	Exploring a pocket for polycycloaliphatic groups in the CXCR3 receptor with the aid of a modular synthetic strategy. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2252-2257.	2.2	9
270	Effects of Histamine H ₄ Receptor Ligands in a Mouse Model of Gastric Ulceration. Pharmacology, 2012, 89, 287-294.	2.2	9

#	Article	IF	CITATIONS
271	Efficacy of Novel Pyrazolone Phosphodiesterase Inhibitors in Experimental Mouse Models of Trypanosoma cruzi. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	9
272	Histamine H3 receptor ligands with a 3-cyclobutoxy motif: a novel and versatile constraint of the classical 3-propoxy linker. MedChemComm, 2010, 1, 39.	3.4	8
273	Combining Quantum Mechanical Ligand Conformation Analysis and Protein Modeling to Elucidate GPCR–Ligand Binding Modes. ChemMedChem, 2013, 8, 49-53.	3.2	8
274	Discovery of novel <i>Schistosoma mansoni</i> PDE4A inhibitors as potential agents against schistosomiasis. Future Medicinal Chemistry, 2019, 11, 1703-1720.	2.3	8
275	Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. Journal of Antimicrobial Chemotherapy, 2020, 75, 958-967.	3.0	8
276	Lead Optimization of Phthalazinone Phosphodiesterase Inhibitors as Novel Antitrypanosomal Compounds. Journal of Medicinal Chemistry, 2020, 63, 3485-3507.	6.4	8
277	Controlling the selectivity of aminergic GPCR ligands from the extracellular vestibule. Bioorganic Chemistry, 2021, 111, 104832.	4.1	8
278	Identification of TSPAN4 as Novel Histamine H4 Receptor Interactor. Biomolecules, 2021, 11, 1127.	4.0	8
279	Increased brain histamine in an alcoholâ€preferring rat line, and modulation of ethanol consumption by H3receptor mechanisms. FASEB Journal, 2001, 15, 1074-1076.	0.5	8
280	Synthesis,in vitro pharmacology and radiosynthesis ofN-(cis-4-fluoromethylcycloyhexyl)-4-(1(H)-imidazol-4-yl)piperidine-11-thiocarbonamide (VUF 5000), a potential PET ligand for the histamine H3 receptor. , 1999, 42, 293-307.		7
281	A Flow-Through Fluorescence Polarization Detection System for Measuring GPCR-Mediated Modulation of cAMP Production. Journal of Biomolecular Screening, 2007, 12, 1074-1083.	2.6	7
282	Surface plasmon resonance biosensor assay for the analysis of small-molecule inhibitor binding to human and parasitic phosphodiesterases. Analytical Biochemistry, 2016, 503, 41-49.	2.4	7
283	A Photoswitchable Agonist for the Histamine H ₃ Receptor, a Prototypic Family A Gâ€Protein oupled Receptor. Angewandte Chemie, 2019, 131, 4579-4583.	2.0	7
284	NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors. Methods in Molecular Biology, 2021, 2268, 233-248.	0.9	7
285	Ebselen inhibits contractile responses of guinea-pig parenchymal lung strips. European Journal of Pharmacology, 1990, 179, 193-199.	3.5	6
286	Fluoride is a contractile agent of guinea pig airway smooth muscle. General Pharmacology, 1991, 22, 631-636.	0.7	6
287	Exploring the CXCR3 Chemokine Receptor with Small-Molecule Antagonists and Agonists. Topics in Medicinal Chemistry, 2014, , 119-185.	0.8	6
288	Metabolic profiling of ligands for the chemokine receptor CXCR3 by liquid chromatography-mass spectrometry coupled to bioaffinity assessment. Analytical and Bioanalytical Chemistry, 2015, 407, 7067-7081.	3.7	6

#	Article	IF	CITATIONS
289	4-Hydroxypiperidines and Their Flexible 3-(Amino)propyloxy Analogues as Non-Imidazole Histamine H3 Receptor Antagonist: Further Structure–Activity Relationship Exploration and In Vitro and In Vivo Pharmacological Evaluation. International Journal of Molecular Sciences, 2018, 19, 1243.	4.1	6
290	Bioluminescence Resonance Energy Transfer Based G Protein-Activation Assay to Probe Duration of Antagonism at the Histamine H3 Receptor. International Journal of Molecular Sciences, 2019, 20, 3724.	4.1	6
291	4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H3Receptor Agonists with in Vivo Central Nervous System Activity. Journal of Medicinal Chemistry, 2019, 62, 10848-10866.	6.4	6
292	Phenyldihydropyrazolones as Novel Lead Compounds Against <i>Trypanosoma cruzi</i> . ACS Omega, 2019, 4, 6585-6596.	3.5	6
293	Desentization of histamine H1 receptor-mediated cyclic GMP production in guinea-pig lung. European Journal of Pharmacology, 1992, 225, 137-141.	2.6	5
294	Allosteric modulation and constitutive activity of fusion proteins between the adenosine A1 receptor and different 351Cys-mutated Gi α-subunits. European Journal of Pharmacology, 2004, 499, 91-98.	3.5	5
295	Regiochemistry of the Condensation of 2-Aroyl-cyclohexanones and 2-Cyanoacetamide: ¹³ C-Labeling Studies and Semiempirical MO Calculations. Journal of Organic Chemistry, 2012, 77, 7355-7363.	3.2	5
296	Ligand-Binding Kinetics on Histamine Receptors. Methods in Pharmacology and Toxicology, 2017, , 115-155.	0.2	5
297	Non-Imidazole Histamine H3 Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines. Molecules, 2018, 23, 326.	3.8	5
298	Covalent Inhibition of the Histamine H3 Receptor. Molecules, 2019, 24, 4541.	3.8	5
299	Structureâ€Activity Relationship of Phenylpyrazolones against Trypanosoma cruzi. ChemMedChem, 2020, 15, 1310-1321.	3.2	5
300	Discovery of Diaryl Ether Substituted Tetrahydrophthalazinones as TbrPDEB1 Inhibitors Following Structure-Based Virtual Screening. Frontiers in Chemistry, 2020, 8, 608030.	3.6	5
301	Molecular Aspects of Histamine Receptors. Receptors, 2016, , 1-49.	0.2	5
302	3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. International Journal for Parasitology: Drugs and Drug Resistance, 2022, 19, 47-55.	3.4	5
303	Methods to determine the constitutive activity of histamine H2 receptors. Methods in Enzymology, 2002, 343, 405-416.	1.0	4
304	Molecular Pharmacology of Chemokine Receptors. Methods in Enzymology, 2016, 570, 457-515.	1.0	4
305	The viral G protein-coupled receptor ORF74 unmasks phospholipase C signaling of the receptor tyrosine kinase IGF-1R. Cellular Signalling, 2016, 28, 595-605.	3.6	4
306	Photoswitching the Efficacy of a Smallâ€Molecule Ligand for a Peptidergic GPCR: from Antagonism to Agonism. Angewandte Chemie, 2018, 130, 11782-11786.	2.0	4

#	Article	IF	CITATIONS
307	Design, synthesis, and <i>in vitro</i> and <i>in vivo</i> characterization of 1-{4-[4-(substituted)piperazin-1-yl]butyl}guanidines and their piperidine analogues as histamine H ₃ receptor antagonists. MedChemComm, 2019, 10, 234-251.	3.4	4
308	Identification of Phenylphthalazinones as a New Class of <i>Leishmania infantum</i> Inhibitors. ChemMedChem, 2020, 15, 219-227.	3.2	4
309	Analysis of Missense Variants in the Human Histamine Receptor Family Reveals Increased Constitutive Activity of E4106.30×30K Variant in the Histamine H1 Receptor. International Journal of Molecular Sciences, 2021, 22, 3702.	4.1	4
310	Optimization of Peptide Linker-Based Fluorescent Ligands for the Histamine H ₁ Receptor. Journal of Medicinal Chemistry, 0, , .	6.4	4
311	Structure-based design, synthesis and structure–activity relationships of dibenzosuberyl- and benzoate-substituted tropines as ligands for acetylcholine-binding protein. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1448-1454.	2.2	3
312	Modulation of constitutive GPCR activity: a way of life?. International Congress Series, 2003, 1249, 131-138.	0.2	2
313	Erratum to "En route to new blockbuster anti-histamines: surveying the offspring of the expanding histamine receptor family―[Trends Pharmacol. Sci. 32 (4) (2011) 250–257]. Trends in Pharmacological Sciences, 2012, 33, 49.	8.7	2
314	Histamine Receptors and Their Ligands: Mechanisms and Applications \hat{a}^{+} , 2017, , .		2
315	Identification of Phenylpyrazolone Dimers as a New Class of Anti―Trypanosoma cruzi Agents. ChemMedChem, 2019, 14, 1662-1668.	3.2	2
316	Label-Free Analysis with Multiple Parameters Separates G Protein-Coupled Receptor Signaling Pathways. Analytical Chemistry, 2020, 92, 14509-14516.	6.5	2
317	Cloning and functional complementation of ten Schistosoma mansoni phosphodiesterases expressed in the mammalian host stages. PLoS Neglected Tropical Diseases, 2020, 14, e0008447.	3.0	2
318	Exploring the Effect of Cyclization of Histamine H ₁ Receptor Antagonists on Ligand Binding Kinetics. ACS Omega, 2021, 6, 12755-12768.	3.5	2
319	Reliving genocide: the work of Kurdish genocide victims in the Court of Justice. Critical Arts, 2011, 25, 296-303.	0.8	1
320	Methods to Study the Molecular Pharmacology of the Histamine H4 Receptor. Methods in Pharmacology and Toxicology, 2017, , 157-181.	0.2	1
321	Tetrahydrophthalazinone Inhibitor of Phosphodiesterase with <i>In Vitro</i> Activity against Intracellular Trypanosomatids. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	1
322	Structure Activity Relationship of N-Substituted Phenyldihydropyrazolones Against Trypanosoma cruzi Amastigotes. Frontiers in Chemistry, 2021, 9, 608438.	3.6	1
323	GPCR proteomics: Mass spectrometric and functional analysis of histamine H1 receptor after baculovirusâ€driven and in vitro cell free expression. FASEB Journal, 2008, 22, 1134.1.	0.5	1
324	A new radioligand binding assay for cytochrome P450IID1 (CYP2D1) in rat liver microsomes: A tool to predict sparteine/debrisoquine type polymorphism of drugs. Journal of Pharmacological and Toxicological Methods, 1994, 31, 149-152.	0.7	0

#	Article	IF	CITATIONS
325	New Chemical Biology Tools for the Histamine Receptor Family. Current Topics in Behavioral Neurosciences, 2022, , .	1.7	0