Chun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/782914/publications.pdf

Version: 2024-02-01

43 papers

2,910 citations

430754 18 h-index 254106 43 g-index

47 all docs 47 docs citations

47 times ranked

3507 citing authors

#	Article	IF	CITATIONS
1	Plant Immunity Requires Conformational Charges of NPR1 via S-Nitrosylation and Thioredoxins. Science, 2008, 321, 952-956.	6.0	964
2	Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 2019, 37, 283-286.	9.4	250
3	Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 2019, 62, 1-7.	2.3	244
4	The Arabidopsis PARAQUAT RESISTANT2 gene encodes an S-nitrosoglutathione reductase that is a key regulator of cell death. Cell Research, 2009, 19, 1377-1387.	5.7	168
5	S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nature Communications, 2013, 4, 1529.	5.8	152
6	S-Nitrosylation Targets GSNO Reductase for Selective Autophagy during Hypoxia Responses in Plants. Molecular Cell, 2018, 71, 142-154.e6.	4.5	135
7	QTL editing confers opposing yield performance in different rice varieties. Journal of Integrative Plant Biology, 2018, 60, 89-93.	4.1	126
8	A Simple CRISPR/Cas9 System for Multiplex Genome Editing in Rice. Journal of Genetics and Genomics, 2015, 42, 703-706.	1.7	112
9	Expanding the Range of CRISPR/Cas9 Genome Editing in Rice. Molecular Plant, 2016, 9, 943-945.	3.9	104
10	Targeted mutagenesis in rice using CRISPR-Cpf1 system. Journal of Genetics and Genomics, 2017, 44, 71-73.	1.7	89
11	A simple and efficient method for CRISPR/Cas9-induced mutant screening. Journal of Genetics and Genomics, 2017, 44, 207-213.	1.7	75
12	Targeting Pin1 by inhibitor APIâ€₁ regulates microRNA biogenesis and suppresses hepatocellular carcinoma development. Hepatology, 2018, 68, 547-560.	3.6	55
13	Transnitrosylation Mediated by the Non-canonical Catalase ROG1 Regulates Nitric Oxide Signaling in Plants. Developmental Cell, 2020, 53, 444-457.e5.	3.1	51
14	Efficient Genome Editing in Populus Using CRISPR/Cas12a. Frontiers in Plant Science, 2020, 11, 593938.	1.7	36
15	Increasing the Genetic Recombination Frequency by Partial Loss of Function of the Synaptonemal Complex in Rice. Molecular Plant, 2015, 8, 1295-1298.	3.9	24
16	Novel ROR1 inhibitor ARI-1 suppresses the development of non-small cell lung cancer. Cancer Letters, 2019, 458, 76-85.	3.2	22
17	CRISPR/Cas9-mediated genome editing in Hevea brasiliensis. Industrial Crops and Products, 2021, 164, 113418.	2.5	22
18	Synthesis of icariin from kaempferol through regioselective methylation and para-Claisen–Cope rearrangement. Beilstein Journal of Organic Chemistry, 2015, 11, 1220-1225.	1.3	21

#	Article	IF	CITATIONS
19	Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice. Science China Life Sciences, 2022, 65, 2328-2331.	2.3	21
20	Copper-catalyzed decarboxylative intramolecular C–O coupling: synthesis of 2-arylbenzofuran from 3-arylcoumarin. RSC Advances, 2014, 4, 903-906.	1.7	18
21	Discovery of Coumarin as Microtubule Affinity-Regulating Kinase 4 Inhibitor That Sensitize Hepatocellular Carcinoma to Paclitaxel. Frontiers in Chemistry, 2019, 7, 366.	1.8	18
22	\hat{l}^2 -Cyclodextrin as an efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in water. Research on Chemical Intermediates, 2016, 42, 417-424.	1.3	17
23	Discovery of a Prenylated Flavonol Derivative as a Pin1 Inhibitor to Suppress Hepatocellular Carcinoma by Modulating MicroRNA Biogenesis. Chemistry - an Asian Journal, 2019, 14, 130-134.	1.7	17
24	Synthesis of Flavonols via Pyrrolidine Catalysis: Origins of the Selectivity for Flavonol versus Aurone. Journal of Organic Chemistry, 2020, 85, 13160-13176.	1.7	17
25	Expanding the scope of genome editing with SpG and SpRY variants in rice. Science China Life Sciences, 2021, 64, 1784-1787.	2.3	15
26	Multiplex CRISPR-Cas9 editing of DNA methyltransferases in rice uncovers a class of non-CG methylation specific for GC-rich regions. Plant Cell, 2021, 33, 2950-2964.	3.1	13
27	ScCas9 recognizes NNG protospacer adjacent motif in genome editing of rice. Science China Life Sciences, 2020, 63, 450-452.	2.3	12
28	2-Phenylbenzo[b]furans: Synthesis and promoting activity on estrogen biosynthesis. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5497-5500.	1.0	11
29	An Improved CRISPR/Cas9 System for Genome Editing in Populus by Using Mannopine Synthase (MAS) Promoter. Frontiers in Plant Science, 2021, 12, 703546.	1.7	11
30	Synthesis of Icaritin. Chinese Journal of Organic Chemistry, 2013, 33, 1298.	0.6	11
31	Microtubule affinity regulating kinase 4 promoted activation of the NLRP3 inflammasome-mediated pyroptosis in periodontitis. Journal of Oral Microbiology, 2022, 14, 2015130.	1.2	11
32	Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. Journal of Genetics and Genomics, 2019, 46, 61-64.	1.7	10
33	Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates. Beilstein Journal of Organic Chemistry, 2015, 11, 288-293.	1.3	9
34	FED: a web tool for foreign element detection of genome-edited organism. Science China Life Sciences, 2021, 64, 167-170.	2.3	8
35	Thiol-Functionalized Mesoporous Silica for Effective Trap of Mercury in Rats. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	6
36	Inhibition of Phosphodiesterase 5 Promotes the Aromatase-Mediated Estrogen Biosynthesis in Osteoblastic Cells by Activation of cGMP/PKG/SHP2 Pathway. Frontiers in Endocrinology, 2021, 12, 636784.	1.5	6

#	Article	IF	CITATION
37	Synthesis of salicylaldehydes from phenols via copper-mediated duff reaction. Research on Chemical Intermediates, 2015, 41, 8147-8158.	1.3	5
38	Rapid Screening of CRISPR/Cas9-Induced Mutants Using the ACT-PCR Method. Methods in Molecular Biology, 2019, 1917, 27-32.	0.4	5
39	Luteolin-7-methylether from Leonurus japonicus inhibits estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19). European Journal of Pharmacology, 2020, 879, 173154.	1.7	5
40	Dummy molecularly imprinted mesoporous silicates for selective adsorption of 2-naphthol. Open Chemistry, 2015, 13 , .	1.0	4
41	Magnesium dicarboxylates promote the prenylation of phenolics that is extended to the total synthesis of icaritin. Organic and Biomolecular Chemistry, 2022, 20, 1117-1124.	1.5	4
42	Synthesis of hexagonal mesoporous silicates functionalized with amino groups in the pore channels by a co-condensation approach. RSC Advances, 2016, 6, 53991-54000.	1.7	3
43	ESI–IT–MS n and DFT calculation for electron affinities of bimetallic oxovanadium complexes. Monatshefte FÃ⅓r Chemie, 2011, 142, 1105-1109.	0.9	1