Emine Alarçin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7828323/publications.pdf

Version: 2024-02-01

19	575	759055	794469
papers	citations	h-index	g-index
r r			0
=	=		
19	19	19	991
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photo-crosslinkable chitosan and gelatin-based nanohybrid bioinks for extrusion-based 3D-bioprinting. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1-12.	1.8	9
2	Development of mucoadhesive modified kappaâ€carrageenan/pectin patches for controlled delivery of drug in the buccal cavity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 787-798.	1.6	22
3	Selection of natural biomaterials for <scp>microâ€tissue</scp> and <scp>organâ€onâ€chip</scp> models. Journal of Biomedical Materials Research - Part A, 2022, 110, 1147-1165.	2.1	11
4	Bilayered laponite/alginate-poly(acrylamide) composite hydrogel for osteochondral injuries enhances macrophage polarization: An in vivo study. Materials Science and Engineering C, 2022, 134, 112721.	3.8	10
5	Advancements and future directions in the antibacterial wound dressings – A review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 703-716.	1.6	47
6	Tissue adhesives: From research to clinical translation. Nano Today, 2021, 36, 101049.	6.2	90
7	An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: Biodegradability, biocompatibility and protein adsorption. International Journal of Biological Macromolecules, 2021, 172, 381-393.	3.6	42
8	Current Strategies for the Regeneration of Skeletal Muscle Tissue. International Journal of Molecular Sciences, 2021, 22, 5929.	1.8	29
9	Doxorubicin hydrochloride loaded nanotextured films as a novel drug delivery platform for ovarian cancer treatment. Pharmaceutical Development and Technology, 2020, 25, 1289-1301.	1.1	3
10	Design of an amphiphilic hyperbranched core/shell-type polymeric nanocarrier platform for drug delivery. Turkish Journal of Chemistry, 2020, 44, 518-534.	0.5	2
11	Development and characterization of oxaceprolâ€loaded polyâ€lactideâ€coâ€glycolide nanoparticles for the treatment of osteoarthritis. Drug Development Research, 2020, 81, 501-510.	1.4	5
12	Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook. Current Pharmaceutical Design, 2019, 24, 5437-5457.	0.9	17
13	Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors. Biomaterials Science, 2018, 6, 1604-1615.	2.6	59
14	Development of hydrogels for regenerative engineering. Biotechnology Journal, 2017, 12, 1600394.	1.8	139
15	Porous Electrospun Fibers with Selfâ€Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules. Small, 2017, 13, 1701949.	5.2	33
16	Biomedicine: Porous Electrospun Fibers with Selfâ€Sealing Functionality: An Enabling Strategy for Trapping Biomacromolecules (Small 47/2017). Small, 2017, 13, 1770249.	5.2	7
17	Recreating composition, structure, functionalities of tissues at nanoscale for regenerative medicine. Regenerative Medicine, 2016, 11, 849-858.	0.8	15
18	Targeted mesenchymal stem cell and vascular endothelial growth factor strategies for repair of nerve defects with nerve tissue implanted autogenous vein graft conduits. Microsurgery, 2016, 36, 578-585.	0.6	15

	Article	11	CITATIONS
19 l	Vascular endothelial growth factorâ€loaded poly(lacticâ€ <i>co</i> â€glycolic acid) microspheresâ€induced lateral axonal sprouting into the vein graft bridging two healthy nerves: Nerve graft prefabrication using controlled release system. Microsurgery, 2012, 32, 635-641.	0.6	20