Li-Ming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7828238/publications.pdf

Version: 2024-02-01

		186265	189892
50	2,941	28	50
papers	citations	h-index	g-index
53	53	53	4818
J J	J.J	J.J	4010
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites. Advanced Materials, 2022, 34, e2107400.	21.0	68
2	Highly Efficient Photothermal Conversion and Water Transport during Solar Evaporation Enabled by Amorphous Hollow Multishelled Nanocomposites (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1
3	Non-targeted metallomics through synchrotron radiation X-ray fluorescence with machine learning for cancer screening using blood samples. Talanta, 2022, 245, 123486.	5.5	6
4	Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Research, 2022, 15, 6019-6025.	10.4	53
5	Size characterization of nanomaterials in environmental and biological matrices through non-electron microscopic techniques. Science of the Total Environment, 2022, 835, 155399.	8.0	3
6	A Nanozymeâ€Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke. Advanced Functional Materials, 2021, 31, 2007130.	14.9	116
7	Using nano-selenium to combat Coronavirus Disease 2019 (COVID-19)?. Nano Today, 2021, 36, 101037.	11.9	57
8	Using nanoselenium to combat Minamata disease in rats: the regulation of gut microbes. Environmental Science: Nano, 2021, 8, 1437-1445.	4.3	2
9	Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nature Nanotechnology, 2021, 16, 708-716.	31.5	153
10	Comparative nanometallomics as a new tool for nanosafety evaluation. Metallomics, $2021,13,.$	2.4	8
11	Induced Autophagy of Macrophages and the Regulation of Inflammatory Effects by Perovskite Nanomaterial LaNiO3. Frontiers in Immunology, 2021, 12, 676773.	4.8	3
12	Towards screening the neurotoxicity of chemicals through feces after exposure to methylmercury or inorganic mercury in rats: A combined study using gut microbiome, metabolomics and metallomics. Journal of Hazardous Materials, 2021, 409, 124923.	12.4	30
13	The Underlying Function and Structural Organization of the Intracellular Protein Corona on Graphdiyne Oxide Nanosheet for Local Immunomodulation. Nano Letters, 2021, 21, 6005-6013.	9.1	63
14	Biotransformation of soluble-insoluble lanthanum species and its induced NLRP3 inflammasome activation and chronic fibrosis. Environmental Pollution, 2021, 284, 117438.	7.5	3
15	Vertical Distribution in Inverted Nonfullerene Polymer Solar Cells by Layerâ€byâ€Layer Solution Fabrication Process. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100386.	2.4	8
16	Death Pathways of Cancer Cells Modulated by Surface Molecule Density on Gold Nanorods. Advanced Science, 2021, 8, e2102666.	11.2	13
17	<i>In vivo</i> percutaneous permeation of gold nanomaterials in consumer cosmetics: implication in dermal safety assessment of consumer nanoproducts. Nanotoxicology, 2021, 15, 131-144.	3.0	20
18	Acute oral methylmercury exposure perturbs the gut microbiome and alters gut-brain axis related metabolites in rats. Ecotoxicology and Environmental Safety, 2020, 190, 110130.	6.0	51

#	Article	IF	CITATIONS
19	Engineering the Nucleophilic Active Oxygen Species in CuTiO _{<i>x</i>} for Efficient Low-Temperature Propene Combustion. Environmental Science & Enpire Rechnology, 2020, 54, 15476-15488.	10.0	48
20	Gold Nanorod-Based Nanoplatform Catalyzes Constant NO Generation and Protects from Cardiovascular Injury. ACS Nano, 2020, 14, 12854-12865.	14.6	30
21	Quantitative Determination of the Vertical Segregation and Molecular Ordering of PBDB-T/ITIC Blend Films with Solvent Additives. ACS Applied Materials & Interfaces, 2020, 12, 24165-24173.	8.0	21
22	Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environmental Science: Nano, 2020, 7, 1115-1125.	4.3	28
23	Neutron scattering study of commensurate magnetic ordering in single crystal CeSb2. Journal of Physics Condensed Matter, 2020, 32, 405605.	1.8	3
24	Stability of Ligands on Nanoparticles Regulating the Integrity of Biological Membranes at the Nano–Lipid Interface. ACS Nano, 2019, 13, 8680-8693.	14.6	59
25	Cellular Responses to Exposure to Outdoor Air from the Chinese Spring Festival at the Air–Liquid Interface. Environmental Science & Technology, 2019, 53, 9128-9138.	10.0	9
26	Impact of Donor–Acceptor Interaction and Solvent Additive on the Vertical Composition Distribution of Bulk Heterojunction Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45979-45990.	8.0	40
27	Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington's Disease. ACS Applied Materials & Interfaces, 2019, 11, 34725-34735.	8.0	101
28	Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance. ACS Nano, 2019, 13, 11488-11499.	14.6	84
29	Correlating Ligand Density with Cellular Uptake of Gold Nanorods Revealed by X-ray Reflectivity. Journal of Nanoscience and Nanotechnology, 2019, 19, 7557-7563.	0.9	4
30	Electron Compensation Effect Suppressed Silver Ion Release and Contributed Safety of Au@Ag Core–Shell Nanoparticles. Nano Letters, 2019, 19, 4478-4489.	9.1	49
31	Manipulation of dipolar magnetism in low-dimensional iron oxide nanoparticle assemblies. Physical Chemistry Chemical Physics, 2019, 21, 6171-6177.	2.8	10
32	Magnetoelectric coupling in iron oxide nanoparticleâ€"barium titanate composites. Journal Physics D: Applied Physics, 2019, 52, 065301.	2.8	6
33	Intestinal Methylation and Demethylation of Mercury. Bulletin of Environmental Contamination and Toxicology, 2019, 102, 597-604.	2.7	42
34	Quantification of Nanomaterial/Nanomedicine Trafficking in Vivo. Analytical Chemistry, 2018, 90, 589-614.	6.5	85
35	Uptake and Transformation of Nanomaterials in Biological Systems Studied by Synchrotron Radiation X-ray Techniques Microscopy and Microanalysis, 2018, 24, 342-345.	0.4	0
36	Carbonâ€Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1800525.	7.6	161

#	Article	IF	CITATIONS
37	Strain and electric-field control of magnetism in supercrystalline iron oxide nanoparticle–BaTiO ₃ composites. Nanoscale, 2017, 9, 12957-12962.	5.6	14
38	Rapid Degradation and High Renal Clearance of Cu ₃ BiS ₃ Nanodots for Efficient Cancer Diagnosis and Photothermal Therapy <i>iin Vivo</i> ii). ACS Nano, 2016, 10, 4587-4598.	14.6	173
39	Polyhydroxylated fullerenols regulate macrophage for cancer adoptive immunotherapy and greatly inhibit the tumor metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 945-954.	3.3	46
40	Use of Synchrotron Radiation-Analytical Techniques To Reveal Chemical Origin of Silver-Nanoparticle Cytotoxicity. ACS Nano, 2015, 9, 6532-6547.	14.6	246
41	Using Hollow Carbon Nanospheres as a Light-Induced Free Radical Generator To Overcome Chemotherapy Resistance. Journal of the American Chemical Society, 2015, 137, 1947-1955.	13.7	182
42	Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nature Communications, 2015, 6, 5988.	12.8	164
43	Gd–Metallofullerenol Nanomaterial Suppresses Pancreatic Cancer Metastasis by Inhibiting the Interaction of Histone Deacetylase 1 and Metastasis-Associated Protein 1. ACS Nano, 2015, 9, 6826-6836.	14.6	64
44	Interaction of gold nanoparticles with proteins and cells. Science and Technology of Advanced Materials, 2015, 16, 034610.	6.1	149
45	Controllable Generation of Nitric Oxide by Nearâ€Infraredâ€Sensitized Upconversion Nanoparticles for Tumor Therapy. Advanced Functional Materials, 2015, 25, 3049-3056.	14.9	194
46	Gadolinium(III)-Chelated Silica Nanospheres Integrating Chemotherapy and Photothermal Therapy for Cancer Treatment and Magnetic Resonance Imaging. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25014-25023.	8.0	70
47	Cancer Treatment: Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy (Adv. Funct. Mater. 44/2014). Advanced Functional Materials, 2014, 24, 7064-7064.	14.9	0
48	Inhibition of Cancer Cell Migration by Gold Nanorods: Molecular Mechanisms and Implications for Cancer Therapy. Advanced Functional Materials, 2014, 24, 6922-6932.	14.9	69
49	Metallofullerenols: Polyhydroxylated Metallofullerenols Stimulate IL- $1\hat{1}^2$ Secretion of Macrophage through TLRs/MyD88/NF- $\hat{1}^9$ B Pathway and NLRP3Inflammasome Activation (Small 12/2014). Small, 2014, 10, 2310-2310.	10.0	2
50	The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Materials, 2012, 4, e32-e32.	7.9	112