
Sebastian Sobek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7828054/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 2009, 54, 2298-2314.	1.6	1,977
2	Global carbon dioxide emissions from inland waters. Nature, 2013, 503, 355-359.	13.7	1,670
3	Temperature-controlled organic carbon mineralization in lake sediments. Nature, 2010, 466, 478-481.	13.7	460
4	Patterns and regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes. Limnology and Oceanography, 2007, 52, 1208-1219.	1.6	391
5	Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography, 2009, 54, 2243-2254.	1.6	323
6	Temperature independence of carbon dioxide supersaturation in global lakes. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	318
7	The catchment and climate regulation of pCO2 in boreal lakes. Global Change Biology, 2003, 9, 630-641.	4.2	309
8	Organic carbon burial in global lakes and reservoirs. Nature Communications, 2017, 8, 1694.	5.8	307
9	Role of lakes for organic carbon cycling in the boreal zone. Global Change Biology, 2004, 10, 141-147.	4.2	281
10	Mapping lake CDOM by satellite remote sensing. Remote Sensing of Environment, 2005, 94, 535-540.	4.6	247
11	Extreme Methane Emissions from a Swiss Hydropower Reservoir: Contribution from Bubbling Sediments. Environmental Science & Technology, 2010, 44, 2419-2425.	4.6	235
12	Greenhouse Gas Emissions from Freshwater Reservoirs: What Does the Atmosphere See?. Ecosystems, 2018, 21, 1058-1071.	1.6	145
13	Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir. Geophysical Research Letters, 2012, 39, .	1.5	130
14	Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter. Limnology and Oceanography, 2018, 63, 1488-1501.	1.6	121
15	Linking allochthonous dissolved organic matter and boreal lake sediment carbon sequestration: The role of lightâ€mediated flocculation. Limnology and Oceanography, 2008, 53, 2416-2426.	1.6	114
16	Using Satellite Remote Sensing to Estimate the Colored Dissolved Organic Matter Absorption Coefficient in Lakes. Ecosystems, 2005, 8, 709-720.	1.6	106
17	Large CO ₂ disequilibria in tropical lakes. Global Biogeochemical Cycles, 2009, 23, .	1.9	94
18	A Carbon Budget of a Small Humic Lake: An Example of the Importance of Lakes for Organic Matter Cycling in Boreal Catchments. Ambio, 2006, 35, 469-475.	2.8	80

#	Article	lF	CITATIONS
19	Spatially Resolved Measurements of CO ₂ and CH ₄ Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs. Environmental Science & Technology, 2018, 52, 607-615.	4.6	65
20	Hydroelectric carbon sequestration. Nature Geoscience, 2012, 5, 838-840.	5.4	64
21	Temperature sensitivity of organic carbon mineralization in contrasting lake sediments. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1215-1225.	1.3	64
22	Organic carbon budget for the Gulf of Bothnia. Journal of Marine Systems, 2006, 63, 155-161.	0.9	63
23	Carbon Dioxide in Boreal Surface Waters: A Comparison of Lakes and Streams. Ecosystems, 2012, 15, 1295-1307.	1.6	61
24	Contribution of Sediment Respiration to Summer CO2 Emission from Low Productive Boreal and Subarctic Lakes. Microbial Ecology, 2005, 50, 529-535.	1.4	60
25	Predicting the depth and volume of lakes from map-derived parameters. Inland Waters, 2011, 1, 177-184.	1.1	57
26	<scp>CO</scp> ₂ evasion from boreal lakes: Revised estimate, drivers of spatial variability, and future projections. Global Change Biology, 2018, 24, 711-728.	4.2	56
27	Predicting lake dissolved organic carbon at a global scale. Scientific Reports, 2020, 10, 8471.	1.6	56
28	Seasonal variation of CO2saturation in the Gulf of Bothnia: Indications of marine net heterotrophy. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	55
29	Low organic carbon burial efficiency in arctic lake sediments. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1231-1243.	1.3	55
30	Carbon dioxide and methane emissions of Swedish lowâ€order streams—a national estimate and lessons learnt from more than a decade of observations. Limnology and Oceanography Letters, 2018, 3, 156-167.	1.6	49
31	Carbon dioxide evasion from headwater systems strongly contributes to the total export of carbon from a small boreal lake catchment. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 13-28.	1.3	46
32	The role of sediments in the carbon budget of a small boreal lake. Limnology and Oceanography, 2016, 61, 1814-1825.	1.6	46
33	Carbon Sequestration in a Large Hydroelectric Reservoir: An Integrative Seismic Approach. Ecosystems, 2014, 17, 430-441.	1.6	45
34	Extreme drought boosts CO ₂ and CH ₄ emissions from reservoir drawdown areas. Inland Waters, 2018, 8, 329-340.	1.1	44
35	High terrestrial carbon load via groundwater to a boreal lake dominated by surface water inflow. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 15-29.	1.3	39
36	The burial efficiency of organic carbon in the sediments of Lake Kinneret. Aquatic Sciences, 2011, 73, 355-364.	0.6	36

SEBASTIAN SOBEK

#	Article	IF	CITATIONS
37	The effect of lake browning and respiration mode on the burial and fate of carbon and mercury in the sediment of two boreal lakes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 233-245.	1.3	35
38	Temporal control on concentration, character, and export of dissolved organic carbon in two hemiboreal headwater streams draining contrasting catchments. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 832-846.	1.3	34
39	Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir. Frontiers in Microbiology, 2013, 4, 101.	1.5	33
40	Organic carbon burial efficiency in a subtropical hydroelectric reservoir. Biogeosciences, 2016, 13, 3331-3342.	1.3	33
41	Comparing methane ebullition variability across space and time in a Brazilian reservoir. Limnology and Oceanography, 2020, 65, 1623-1634.	1.6	32
42	Enhanced carbon loss from anoxic lake sediment through diffusion of dissolved organic carbon. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1959-1977.	1.3	31
43	The transformation of macrophyteâ€derived organic matter to methane relates to plant water and nutrient contents. Limnology and Oceanography, 2019, 64, 1737-1749.	1.6	31
44	The CO ₂ â€equivalent balance of freshwater ecosystems is nonâ€linearly related to productivity. Global Change Biology, 2020, 26, 5705-5715.	4.2	29
45	Regionalâ€scale variation of dissolved organic carbon concentrations in Swedish lakes. Limnology and Oceanography, 2014, 59, 1612-1620.	1.6	28
46	Regional Variability and Drivers of Below Ice CO2 in Boreal and Subarctic Lakes. Ecosystems, 2016, 19, 461-476.	1.6	28
47	Global increase in methane production under future warming of lake bottom waters. Global Change Biology, 2022, 28, 5427-5440.	4.2	27
48	Carbon dioxide emission from drawdown areas of a Brazilian reservoir is linked to surrounding land cover. Aquatic Sciences, 2019, 81, 1.	0.6	25
49	Benthic ostracode δ13C as sensor for early Holocene establishment of modern circulation patterns in Central Europe. Quaternary Science Reviews, 2013, 66, 112-122.	1.4	22
50	Uncoupled organic matter burial and quality in boreal lake sediments over the Holocene. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1751-1763.	1.3	21
51	Methane formation in tropical reservoirs predicted from sediment age and nitrogen. Scientific Reports, 2019, 9, 11017.	1.6	20
52	Changes in bacterial community composition along a solar radiation gradient in humic waters. Aquatic Sciences, 2006, 68, 415-424.	0.6	19
53	Temperature Dependence of Apparent Respiratory Quotients and Oxygen Penetration Depth in Contrasting Lake Sediments. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3076-3087.	1.3	19
54	High spatial variability of gas transfer velocity in streams revealed by turbulence measurements. Inland Waters, 2018, 8, 461-473.	1.1	19

SEBASTIAN SOBEK

#	Article	IF	CITATIONS
55	An empirical model to predict methane production in inland water sediment from particular organic matter supply and reactivity. Limnology and Oceanography, 2021, 66, 3643-3655.	1.6	18
56	Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming. Inland Waters, 2015, 5, 275-282.	1.1	17
57	High variability in iron-bound organic carbon among five boreal lake sediments. Biogeochemistry, 2018, 139, 19-29.	1.7	17
58	Widespread release of dissolved organic carbon from anoxic boreal lake sediments. Inland Waters, 2017, 7, 151-163.	1.1	16
59	Emission of CO2 from hydroelectric reservoirs in northern Sweden. Archiv Für Hydrobiologie, 2004, 159, 25-42.	1.1	15
60	Reduced Mineralization of Terrestrial OC in Anoxic Sediment Suggests Enhanced Burial Efficiency in Reservoirs Compared to Other Depositional Environments. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 678-688.	1.3	15
61	High organic carbon burial but high potential for methane ebullition in the sediments of an Amazonian hydroelectric reservoir. Biogeosciences, 2020, 17, 1495-1505.	1.3	15
62	Spatially Resolved Measurements in Tropical Reservoirs Reveal Elevated Methane Ebullition at River Inflows and at High Productivity. Global Biogeochemical Cycles, 2021, 35, e2020GB006717.	1.9	15
63	Hotspots of Diffusive CO ₂ and CH ₄ Emission From Tropical Reservoirs Shift Through Time. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006014.	1.3	14
64	Cross-continental importance of CH4 emissions from dry inland-waters. Science of the Total Environment, 2022, 814, 151925.	3.9	13
65	Implications of river intrusion and convective mixing on the spatial and temporal variability of under-ice CO2. Inland Waters, 2019, 9, 162-176.	1.1	12
66	Where does the river end? Drivers of spatiotemporal variability in CO 2 concentration and flux in the inflow area of a large boreal lake. Limnology and Oceanography, 2020, 65, 1161-1174.	1.6	8
67	Low sedimentâ€water gas exchange in a small boreal lake. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2493-2505.	1.3	4
68	Cold carbon storage. Nature, 2014, 511, 415-416.	13.7	1