
Pilar Mateo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7827730/publications.pdf Version: 2024-02-01

Οιι λο Μλτεώ

#	Article	IF	CITATIONS
1	Lithic cyanobacterial communities in the polyextreme Sahara Desert: implications for the search for the limits of life. Environmental Microbiology, 2022, 24, 451-474.	3.8	7
2	Microenvironmental Conditions Drive the Differential Cyanobacterial Community Composition of Biocrusts from the Sahara Desert. Microorganisms, 2021, 9, 487.	3.6	20
3	Analysis of molecular diversity within single cyanobacterial colonies from environmental samples. Scientific Reports, 2020, 10, 18453.	3.3	5
4	Land degradation effects on composition of pioneering soil communities: An alternative successional sequence for dryland cyanobacterial biocrusts. Soil Biology and Biochemistry, 2020, 146, 107824.	8.8	28
5	Cyanobacterial biocrust diversity in Mediterranean ecosystems along a latitudinal and climatic gradient. New Phytologist, 2019, 221, 123-141.	7.3	77
6	Assessing the influence of soil abiotic and biotic factors on Nostoc commune inoculation success. Plant and Soil, 2019, 444, 57-70.	3.7	12
7	Differences in the Cyanobacterial Community Composition of Biocrusts From the Drylands of Central Mexico. Are There Endemic Species?. Frontiers in Microbiology, 2019, 10, 937.	3.5	32
8	Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe. PeerJ, 2019, 7, e6169.	2.0	43
9	Fingerprinting <i>Chamaesiphon</i> populations as an approach to assess the quality of running waters. River Research and Applications, 2018, 34, 595-605.	1.7	0
10	Diversity of biocrust-forming cyanobacteria in a semiarid gypsiferous site from Central Spain. Journal of Arid Environments, 2018, 151, 83-89.	2.4	26
11	Cyanobacteria as bioindicators and bioreporters of environmental analysis in aquatic ecosystems. Biodiversity and Conservation, 2015, 24, 909-948.	2.6	47
12	Monitoring bioavailable phosphorus in lotic systems: A polyphasic approach based on cyanobacteria. Science of the Total Environment, 2014, 475, 158-168.	8.0	17
13	Specific responses to nitrogen and phosphorus enrichment in cyanobacteria: Factors influencing changes in species dominance along eutrophic gradients. Water Research, 2014, 48, 622-631.	11.3	42
14	A battery of bioreporters of nitrogen bioavailability in aquatic ecosystems based on cyanobacteria. Science of the Total Environment, 2014, 475, 169-179.	8.0	14
15	Foreword. Science of the Total Environment, 2014, 475, 157.	8.0	2
16	Polyphasic characterization of benthic cyanobacterial diversity from biofilms of the Guadarrama river (Spain): morphological, molecular, and ecological approaches ¹ . Journal of Phycology, 2013, 49, 282-297.	2.3	26
17	Phenotypic and genotypic characteristics of <i>Phormidium</i> -like cyanobacteria inhabiting microbial mats are correlated with the trophic status of running waters. European Journal of Phycology, 2013, 48, 235-252.	2.0	24
18	Molecular Fingerprinting of Cyanobacteria from River Biofilms as a Water Quality Monitoring Tool. Applied and Environmental Microbiology, 2013, 79, 1459-1472.	3.1	38

Pilar Mateo

#	Article	IF	CITATIONS
19	Temperature Drives the Continental-Scale Distribution of Key Microbes in Topsoil Communities. Science, 2013, 340, 1574-1577.	12.6	252
20	Phenotypic variability and phylogenetic relationships of the genera Tolypothrix and Calothrix (Nostocales, Cyanobacteria) from running water. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 3039-3051.	1.7	45
21	Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers. FEMS Microbiology Ecology, 2011, 76, 185-198.	2.7	27
22	Phosphatase activities of cyanobacteria as indicators of nutrient status in a Pyrenees river. Hydrobiologia, 2010, 652, 255-268.	2.0	27
23	A Molecular Fingerprint Technique to Detect Pollution-Related Changes in River Cyanobacterial Diversity. Journal of Environmental Quality, 2007, 36, 464-468.	2.0	14
24	PHYSIOLOGICAL DIFFERENCES BETWEEN TWO SPECIES OF CYANOBACTERIA IN RELATION TO PHOSPHORUS LIMITATION1. Journal of Phycology, 2006, 42, 61-66.	2.3	36
25	Benthic cyanobacterial assemblages as indicators of nutrient enrichment regimes in a Spanish river. Clean - Soil, Air, Water, 2006, 34, 67-72.	0.6	18
26	Spatial and temporal changes in water quality in a Spanish river. Science of the Total Environment, 1999, 241, 75-90.	8.0	71