M Z Naser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7827290/publications.pdf

Version: 2024-02-01

147566 197535 2,751 92 31 49 citations h-index g-index papers 93 93 93 1280 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Error Metrics and Performance Fitness Indicators for Artificial Intelligence and Machine Learning in Engineering and Sciences. Architecture, Structures and Construction, 2023, 3, 499-517.	0.7	72
2	Quantitative evaluation of the relationship between physical parameters and building demolition or adaptation outcomes. Architecture, Structures and Construction, 2023, 3, 415-428.	0.7	5
3	Examining the behavior of concrete masonry units under fire and postâ€fire conditions. Fire and Materials, 2023, 47, 159-169.	0.9	2
4	Explainable machine learning using real, synthetic and augmented fire tests to predict fire resistance and spalling of RC columns. Engineering Structures, 2022, 253, 113824.	2.6	31
5	Generalized temperature-dependent material models for compressive strength of masonry using fire tests, statistical methods and artificial intelligence. Architecture, Structures and Construction, 2022, 2, 223-229.	0.7	2
6	Deriving mapping functions to tie anthropometric measurements to body mass index via interpretable machine learning. Machine Learning With Applications, 2022, 8, 100259.	3.0	2
7	Fire Protection and Materials Flammability Control by Artificial Intelligence. Fire Technology, 2022, 58, 1071-1073.	1.5	4
8	Effective medium crack classification on laboratory concrete specimens via competitive machine learning. Structures, 2022, 37, 858-870.	1.7	18
9	Demystifying Ten Big Ideas and Rules Every Fire Scientist & Engineer Should Know About Blackbox, Whitebox and Causal Artificial Intelligence. Fire Technology, 2022, 58, 1075-1085.	1.5	3
10	An opinion piece on the dos and don'ts of artificial intelligence in civil engineering and charting a path from data-driven analysis to causal knowledge discovery. Civil Engineering and Environmental Systems, 2022, 39, 1-11.	0.4	4
11	Flexural behavior of RC beams externally bonded with polyethylene terephthalate (PET) fiber reinforced polymer (FRP) laminates. Engineering Structures, 2022, 256, 114036.	2.6	30
12	Hiding in plain sight: What can interpretable unsupervised machine learning and clustering analysis tell us about the fire behavior of reinforced concrete columns?. Structures, 2022, 40, 920-935.	1.7	6
13	Failure mode classification and deformability evaluation for concrete beams reinforced with FRP bars. Composite Structures, 2022, 292, 115651.	3.1	10
14	Characterizing disability in fire evacuation: A progressive review. Journal of Building Engineering, 2022, 53, 104573.	1.6	5
15	A Faculty's Perspective on Infusing Artificial Intelligence into Civil Engineering Education. Journal of Civil Engineering Education, 2022, 148, .	0.8	5
16	Autonomous detection of concrete damage under fire conditions. Automation in Construction, 2022, 140, 104364.	4.8	11
17	Effect of protective coating on axial resistance and residual capacity of self-compacting concrete columns exposed to standard fire. Engineering Structures, 2022, 264, 114444.	2.6	12
18	Digital twin for next gen concretes: On-demand tuning of vulnerable mixtures through Explainable and Anomalous Machine Learning. Cement and Concrete Composites, 2022, 132, 104640.	4.6	6

#	Article	IF	Citations
19	CLEMSON: An Automated Machine-Learning Virtual Assistant for Accelerated, Simulation-Free, Transparent, Reduced-Order, and Inference-Based Reconstruction of Fire Response of Structural Members. Journal of Structural Engineering, 2022, 148, .	1.7	3
20	Evaluating structural response of concrete-filled steel tubular columns through machine learning. Journal of Building Engineering, 2021, 34, 101888.	1.6	43
21	Observational Analysis of Fire-Induced Spalling of Concrete through Ensemble Machine Learning and Surrogate Modeling. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	32
22	Can past failures help identify vulnerable bridges to extreme events? A biomimetical machine learning approach. Engineering With Computers, 2021, 37, 1099-1131.	3.5	12
23	Classifying bridges for the risk of fire hazard via competitive machine learning. Advances in Bridge Engineering, 2021, 2, .	0.8	10
24	Mechanistically Informed Machine Learning and Artificial Intelligence in Fire Engineering and Sciences. Fire Technology, 2021, 57, 2741-2784.	1.5	57
25	Modeling Strategies of Finite Element Simulation of Reinforced Concrete Beams Strengthened with FRP: A Review. Journal of Composites Science, 2021, 5, 19.	1.4	53
26	Fire hazard in transportation infrastructure: Review, assessment, and mitigation strategies. Frontiers of Structural and Civil Engineering, 2021, 15, 46-60.	1.2	30
27	Extraterrestrial Construction in Lunar and Martian Environments. , 2021, , .		8
28	Ceramic tiles as sustainable, functional and insulating materials to mitigate fire damage. Advances in Applied Ceramics, 2021, 120, 227-239.	0.6	4
29	Fire performance of masonry under various testing methods. Construction and Building Materials, 2021, 289, 123183.	3.2	18
30	An engineer's guide to eXplainable Artificial Intelligence and Interpretable Machine Learning: Navigating causality, forced goodness, and the false perception of inference. Automation in Construction, 2021, 129, 103821.	4.8	81
31	Application of machine learning models for designing CFCFST columns. Journal of Constructional Steel Research, 2021, 185, 106856.	1.7	39
32	Mapping functions: A physics-guided, data-driven and algorithm-agnostic machine learning approach to discover causal and descriptive expressions of engineering phenomena. Measurement: Journal of the International Measurement Confederation, 2021, 185, 110098.	2.5	10
33	StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains. Journal of Building Engineering, 2021, 44, 102977.	1.6	26
34	RAI: Rapid, Autonomous and Intelligent machine learning approach to identify fire-vulnerable bridges. Applied Soft Computing Journal, 2021, 113, 107896.	4.1	14
35	Systematic Integration of Artificial Intelligence Toward Evaluating Response of Materials and Structures in Extreme Conditions. Springer Transactions in Civil and Environmental Engineering, 2021, , 183-212.	0.3	2
36	Machine Learning to Derive Unified Material Models for Steel Under Fire Conditions. Springer Transactions in Civil and Environmental Engineering, 2021, , 213-225.	0.3	3

#	Article	IF	CITATIONS
37	Boosting machines for predicting shear strength of CFS channels with staggered web perforations. Structures, 2021, 34, 3391-3403.	1.7	29
38	Special Issue on "Smart Systems in Fire Engineering― Fire Technology, 2021, 57, 2737-2740.	1.5	6
39	Concrete under fire: an assessment through intelligent pattern recognition. Engineering With Computers, 2020, 36, 1915-1928.	3.5	24
40	Properties and material models for construction materials post exposure to elevated temperatures. Mechanics of Materials, 2020, 142, 103293.	1.7	23
41	Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams. Engineering Structures, 2020, 224, 111221.	2.6	110
42	The Role of Computational Intelligence in Realizing Modern and Autonomous Fire Evaluation Methods. , 2020, , .		0
43	Effect of Temperature-Induced Moment-Shear Interaction on Fire Resistance of Steel Beams. International Journal of Steel Structures, 2020, 20, 1540-1551.	0.6	4
44	Implementation of new elements and material models in OpenSees software to account for post-earthquacke fire damage. Structures, 2020, 27, 1777-1785.	1.7	5
45	Enabling cognitive and autonomous infrastructure in extreme events through computer vision. Innovative Infrastructure Solutions, 2020, 5, 1 .	1.1	3
46	Experimental Investigation and Modeling of the Thermal Effect on the Mechanical Properties of Polyethylene-Terephthalate FRP Laminates. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	8
47	Polymers in space exploration and commercialization., 2020,, 457-484.		6
48	Egress Parameters Influencing Emergency Evacuation in High-Rise Buildings. Fire Technology, 2020, 56, 2035-2057.	1.5	25
49	Autonomous Fire Resistance Evaluation. Journal of Structural Engineering, 2020, 146, .	1.7	24
50	AI modelling & mapping functions: a cognitive, physics-guided, simulation-free and instantaneous approach to fire evaluation., 2020, , .		2
51	High temperature properties of fiber reinforced polymers and fire insulation for fire resistance modeling of strengthened concrete structures. Composites Part B: Engineering, 2019, 175, 107104.	5.9	46
52	Extraterrestrial construction materials. Progress in Materials Science, 2019, 105, 100577.	16.0	84
53	Heuristic machine cognition to predict fire-induced spalling and fire resistance of concrete structures. Automation in Construction, 2019, 106, 102916.	4.8	39
54	Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 2019, 198, 109542.	2.6	261

#	Article	IF	CITATIONS
55	Finite element modeling of reinforced concrete beams externally strengthened in flexure with side-bonded FRP laminates. Composites Part B: Engineering, 2019, 173, 106952.	5.9	79
56	Properties and material models for common construction materials at elevated temperatures. Construction and Building Materials, 2019, 215, 192-206.	3.2	44
57	Al-based cognitive framework for evaluating response of concrete structures in extreme conditions. Engineering Applications of Artificial Intelligence, 2019, 81, 437-449.	4.3	41
58	Designing steel bridges for fire safety. Journal of Constructional Steel Research, 2019, 156, 46-53.	1.7	39
59	Fire resistance evaluation through artificial intelligence - A case for timber structures. Fire Safety Journal, 2019, 105, 1-18.	1.4	56
60	Space-native construction materials for earth-independent and sustainable infrastructure. Acta Astronautica, 2019, 155, 264-273.	1.7	18
61	Autonomous and resilient infrastructure with cognitive and self-deployable load-bearing structural components. Automation in Construction, 2019, 99, 59-67.	4.8	11
62	Properties and material models for modern construction materials at elevated temperatures. Computational Materials Science, 2019, 160, 16-29.	1.4	41
63	Temperature-induced instability in cold-formed steel beams with slotted webs subject to shear. Thin-Walled Structures, 2019, 136, 333-352.	2.7	20
64	Predicting the response of continuous RC deep beams under varying levels of differential settlement. Frontiers of Structural and Civil Engineering, 2019, 13, 686-700.	1,2	9
65	Modeling the shear strength of concrete beams reinforced with CFRP bars under unsymmetrical loading. Mechanics of Advanced Materials and Structures, 2019, 26, 1290-1297.	1.5	17
66	Materials and design concepts for space-resilient structures. Progress in Aerospace Sciences, 2018, 98, 74-90.	6.3	58
67	Cognitive infrastructure - a modern concept for resilient performance under extreme events. Automation in Construction, 2018, 90, 253-264.	4.8	29
68	Response of fire exposed composite girders under dominant flexural and shear loading. Journal of Structural Fire Engineering, 2018, 9, 108-125.	0.4	8
69	Approach for shear capacity evaluation of fire exposed steel and composite beams. Journal of Constructional Steel Research, 2018, 141, 91-103.	1.7	23
70	Deriving temperature-dependent material models for structural steel through artificial intelligence. Construction and Building Materials, 2018, 191, 56-68.	3.2	59
71	Behavior of prestressed stayed steel columns under fire conditions. International Journal of Steel Structures, 2017, 17, 195-204.	0.6	14
72	Comparative fire behavior of composite girders under flexural and shear loading. Thin-Walled Structures, 2017, 116, 82-90.	2.7	31

#	Article	IF	CITATIONS
73	Emerging Construction Materials for Energy Infrastructure. , 2017, , 113-122.		1
74	Strategies for enhancing fire performance of steel bridges. Engineering Structures, 2017, 131, 446-458.	2.6	47
75	Factors governing onset of local instabilities in fire exposed steel beams. Thin-Walled Structures, 2016, 98, 48-57.	2.7	19
76	Application of Importance Factor for Classification of Bridges for Mitigating Fire Hazard., 2015,,.		2
77	A probabilistic assessment for classification of bridges against fire hazard. Fire Safety Journal, 2015, 76, 65-73.	1.4	45
78	Effect of local instability on capacity of steel beams exposed to fire. Journal of Constructional Steel Research, 2015, 111, 31-42.	1.7	26
79	Effect of shear on fire response of steel beams. Journal of Constructional Steel Research, 2014, 97, 48-58.	1.7	32
80	Performance of RC T-Beams Externally Strengthened with CFRP Laminates under Elevated Temperatures. Journal of Structural Fire Engineering, 2014, 5, 1-24.	0.4	17
81	Nonlinear behavior of shear deficient RC beams strengthened with near surface mounted glass fiber reinforcement under cyclic loading. Materials & Design, 2014, 61, 16-25.	5.1	49
82	Importance factor for design of bridges against fire hazard. Engineering Structures, 2013, 54, 207-220.	2.6	56
83	Investigation on concrete compressive strength mixed with sand contaminated by crude oil products. Construction and Building Materials, 2013, 47, 99-103.	3.2	13
84	Finite element simulation of reinforced concrete beams externally strengthened with short-length CFRP plates. Composites Part B: Engineering, 2013, 45, 1722-1730.	5.9	95
85	Modeling the response of composite beam–slab assemblies exposed to fire. Journal of Constructional Steel Research, 2013, 80, 163-173.	1.7	43
86	Bond Behavior of CFRP Cured Laminates: Experimental and Numerical Investigation. Journal of Engineering Materials and Technology, Transactions of the ASME, 2012, 134, .	0.8	48
87	Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites. Materials & Design, 2012, 42, 378-387.	5.1	69
88	Analysis of RC T-beams strengthened with CFRP plates under fire loading using ANN. Construction and Building Materials, 2012, 37, 301-309.	3.2	46
89	Thermal-stress analysis of RC beams reinforced with GFRP bars. Composites Part B: Engineering, 2012, 43, 2135-2142.	5.9	49
90	Thermal-Stress Finite Element Analysis of CFRP Strengthened Concrete Beam Exposed to Top Surface Fire Loading. Mechanics of Advanced Materials and Structures, 2011, 18, 172-180.	1.5	22

#	Article	IF	CITATIONS
91	Modeling of insulated CFRP-strengthened reinforced concrete T-beam exposed to fire. Engineering Structures, 2009, 31, 3072-3079.	2.6	102
92	Enhancing fire resistance of reinforced concrete beams through sacrificial reinforcement. Architecture, Structures and Construction, 0, , .	0.7	1