## Gustavo C Macintosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7827166/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Arabidopsis PAP17 is a dual-localized purple acid phosphatase up-regulated during phosphate<br>deprivation, senescence, and oxidative stress. Journal of Experimental Botany, 2022, 73, 382-399.                         | 4.8 | 12        |
| 2  | Lamp1 mediates lipid transport, but is dispensable for autophagy in <i>Drosophila</i> . Autophagy, 2022, 18, 2443-2458.                                                                                                  | 9.1 | 13        |
| 3  | Broadening the impact of plant science through innovative, integrative, and inclusive outreach. Plant<br>Direct, 2021, 5, e00316.                                                                                        | 1.9 | 14        |
| 4  | Equity, diversity, and inclusion efforts in professional societies: intention versus reaction. Plant Cell, 2021, 33, 3189-3193.                                                                                          | 6.6 | 16        |
| 5  | Interaction between Rag genes results in a unique synergistic transcriptional response that enhances soybean resistance to soybean aphids. BMC Genomics, 2021, 22, 887.                                                  | 2.8 | 1         |
| 6  | The Resistant Soybean-Aphis glycines Interaction: Current Knowledge and Prospects. Frontiers in Plant Science, 2020, 11, 1223.                                                                                           | 3.6 | 10        |
| 7  | TOR mediates the autophagy response to altered nucleotide homeostasis in an RNase mutant. Journal of Experimental Botany, 2020, 71, 6907-6920.                                                                           | 4.8 | 21        |
| 8  | Organellar and Secretory Ribonucleases: Major Players in Plant RNA Homeostasis. Plant Physiology,<br>2020, 183, 1438-1452.                                                                                               | 4.8 | 24        |
| 9  | <i><scp>QQS</scp></i> orphan gene and its interactor <i><scp>NF</scp>â€<scp>YC</scp>4</i> reduce susceptibility to pathogens and pests. Plant Biotechnology Journal, 2019, 17, 252-263.                                  | 8.3 | 51        |
| 10 | Gene pyramids and the balancing act of keeping pests at bay. Journal of Experimental Botany, 2019, 70,<br>4591-4593.                                                                                                     | 4.8 | 3         |
| 11 | Induction of ethylene inhibits development of soybean sudden death syndrome by inducing<br>defense-related genes and reducing Fusarium virguliforme growth. PLoS ONE, 2019, 14, e0215653.                                | 2.5 | 16        |
| 12 | Transcriptional and Chemical Changes in Soybean Leaves in Response to Long-Term Aphid Colonization.<br>Frontiers in Plant Science, 2019, 10, 310.                                                                        | 3.6 | 42        |
| 13 | Identification and Genetic Characterization of Soybean Accessions Exhibiting Antibiosis and<br>Antixenosis Resistance to Aphis glycines (Hemiptera: Aphididae). Journal of Economic Entomology,<br>2019, 112, 1428-1438. | 1.8 | 14        |
| 14 | The Ins and Outs of Autophagic Ribosome Turnover. Cells, 2019, 8, 1603.                                                                                                                                                  | 4.1 | 23        |
| 15 | Changes in membrane lipids in soybean leaves in response to soybean aphid infestation. FASEB Journal, 2018, 32, .                                                                                                        | 0.5 | 0         |
| 16 | Degradation of cytosolic ribosomes by autophagy-related pathways. Plant Science, 2017, 262, 169-174.                                                                                                                     | 3.6 | 25        |
| 17 | Localization of RNS2 ribonuclease to the vacuole is required for its role in cellular homeostasis.<br>Planta, 2017, 245, 779-792.                                                                                        | 3.2 | 38        |
| 18 | Cell growth and homeostasis are disrupted in arabidopsis rns2-2 mutants missing the main vacuolar<br>RNase activity. Annals of Botany, 2017, 120, 911-922.                                                               | 2.9 | 23        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Validation of a hairy roots system to study soybean-soybean aphid interactions. PLoS ONE, 2017, 12, e0174914.                                                                                                              | 2.5 | 6         |
| 20 | Deficiencies in RNS2â€mediated ribosomal RNA turnover cause changes in the Pentose Phosphate<br>Pathway flux and alter cell growth in Arabidopsis. FASEB Journal, 2017, 31, 911.3.                                         | 0.5 | 0         |
| 21 | Abscisic acid deficiency increases defence responses against <i><scp>M</scp>yzus persicae</i> in<br><scp>A</scp> rabidopsis. Molecular Plant Pathology, 2016, 17, 225-235.                                                 | 4.2 | 63        |
| 22 | Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).<br>Autophagy, 2016, 12, 1-222.                                                                                                 | 9.1 | 4,701     |
| 23 | Vacuolar Turnover of rRNA Mediated by An Autophagyâ€Dependent Mechanism Is Necessary To Maintain<br>Cellular Homeostasis. FASEB Journal, 2016, 30, 808.4.                                                                  | 0.5 | 0         |
| 24 | NnSR1, a class III non-S-RNase specifically induced in Nicotiana alata under phosphate deficiency, is<br>localized in endoplasmic reticulum compartments. Plant Science, 2015, 236, 250-259.                               | 3.6 | 17        |
| 25 | Investigation of the Chemical Interface in the Soybean–Aphid and Rice–Bacteria Interactions Using MALDI-Mass Spectrometry Imaging. Analytical Chemistry, 2015, 87, 5294-5301.                                              | 6.5 | 61        |
| 26 | Evidence for autophagy-dependent pathways of rRNA turnover in <i>Arabidopsis</i> . Autophagy, 2015, 11, 2199-2212.                                                                                                         | 9.1 | 92        |
| 27 | Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean. PLoS ONE, 2015, 10, e0145660.                                                                                                               | 2.5 | 23        |
| 28 | Phylogenetic Analyses and Characterization of RNase X25 from Drosophila melanogaster Suggest a<br>Conserved Housekeeping Role and Additional Functions for RNase T2 Enzymes in Protostomes. PLoS<br>ONE, 2014, 9, e105444. | 2.5 | 16        |
| 29 | Multiple Phytohormone Signals Control the Transcriptional Response to Soybean Aphid Infestation in<br>Susceptible and Resistant Soybean Plants. Molecular Plant-Microbe Interactions, 2013, 26, 116-129.                   | 2.6 | 114       |
| 30 | Performance and prospects of <i><scp>R</scp>ag</i> genes for management of soybean aphid.<br>Entomologia Experimentalis Et Applicata, 2013, 147, 201-216.                                                                  | 1.4 | 85        |
| 31 | What to Eat: Evidence for Selective Autophagy in Plants <sup>F</sup> . Journal of Integrative Plant<br>Biology, 2012, 54, 907-920.                                                                                         | 8.5 | 78        |
| 32 | A nematode, fungus, and aphid interact via a shared host plant: implications for soybean management.<br>Entomologia Experimentalis Et Applicata, 2012, 143, 55-66.                                                         | 1.4 | 21        |
| 33 | Phytohormone signaling pathway analysis method for comparing hormone responses in plant-pest interactions. BMC Research Notes, 2012, 5, 392.                                                                               | 1.4 | 35        |
| 34 | Effects of an insect–nematode–fungus pest complex on grain yield and composition of specialty low<br>linolenic acid soybean. Crop Protection, 2012, 42, 210-216.                                                           | 2.1 | 4         |
| 35 | Identification of S-RNase and peroxidase in petunia nectar. Journal of Plant Physiology, 2011, 168, 734-738.                                                                                                               | 3.5 | 38        |
| 36 | What Is the Economic Threshold of Soybean Aphids (Hemiptera: Aphididae) in Enemy-Free Space?.<br>Journal of Economic Entomology, 2011, 104, 845-852.                                                                       | 1.8 | 10        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | <i>rnaset2</i> mutant zebrafish model familial cystic leukoencephalopathy and reveal a role for<br>RNase T2 in degrading ribosomal RNA. Proceedings of the National Academy of Sciences of the United<br>States of America, 2011, 108, 1099-1103.      | 7.1 | 91        |
| 38 | The connection between ribophagy, autophagy and ribosomal RNA decay. Autophagy, 2011, 7, 662-663.                                                                                                                                                      | 9.1 | 47        |
| 39 | RNS2, a conserved member of the RNase T2 family, is necessary for ribosomal RNA decay in plants.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1093-1098.                                             | 7.1 | 148       |
| 40 | RNase T2 Family: Enzymatic Properties, Functional Diversity, and Evolution of Ancient Ribonucleases.<br>Nucleic Acids and Molecular Biology, 2011, , 89-114.                                                                                           | 0.2 | 34        |
| 41 | RNase T2 genes from rice and the evolution of secretory ribonucleases in plants. Molecular Genetics and Genomics, 2010, 283, 381-396.                                                                                                                  | 2.1 | 94        |
| 42 | Petunia nectar proteins have ribonuclease activity. Journal of Experimental Botany, 2010, 61, 2951-2965.                                                                                                                                               | 4.8 | 50        |
| 43 | Constitutive and Induced Differential Accumulation of Amino Acid in Leaves of Susceptible and<br>Resistant Soybean Plants in Response to the Soybean Aphid (Hemiptera: Aphididae). Environmental<br>Entomology, 2010, 39, 856-864.                     | 1.4 | 75        |
| 44 | Zebrafish RNase T2 genes and the evolution of secretory ribonucleases in animals. BMC Evolutionary Biology, 2009, 9, 170.                                                                                                                              | 3.2 | 27        |
| 45 | The Soybean Resistance Gene <i>Rag1</i> Does Not Protect Against Soybean Cyst and Root-knot<br>Nematodes. Plant Health Progress, 2009, 10, .                                                                                                           | 1.4 | 2         |
| 46 | Impact of transcriptional, ABA-dependent, and ABA-independent pathways on wounding regulation of RNS1 expression. Molecular Genetics and Genomics, 2008, 280, 249-61.                                                                                  | 2.1 | 38        |
| 47 | StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration. Journal of Experimental Botany, 2003, 54, 2589-2591.                                                                                                          | 4.8 | 31        |
| 48 | Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity inSolanum tuberosum. Physiologia Plantarum, 2002, 115, 417-427.                                                                                    | 5.2 | 48        |
| 49 | Local and systemic wound-induction of RNase and nuclease activities in Arabidopsis: RNS1 as a marker for a JA-independent systemic signaling pathway. Plant Journal, 2002, 29, 393-403.                                                                | 5.7 | 91        |
| 50 | Characterization of Rny1, the Saccharomyces cerevisiae member of the T2 RNase family of RNases:<br>Unexpected functions for ancient enzymes?. Proceedings of the National Academy of Sciences of the<br>United States of America, 2001, 98, 1018-1023. | 7.1 | 79        |
| 51 | Identification and Analysis of Arabidopsis Expressed Sequence Tags Characteristic of Non-Coding<br>RNAs. Plant Physiology, 2001, 127, 765-776.                                                                                                         | 4.8 | 13        |
| 52 | Regulation of S-Like Ribonuclease Levels in Arabidopsis. Antisense Inhibition of RNS1 orRNS2 Elevates<br>Anthocyanin Accumulation1. Plant Physiology, 1999, 119, 331-342.                                                                              | 4.8 | 172       |
| 53 | Current perspectives on mRNA stability in plants: multiple levels and mechanisms of control. Trends in Plant Science, 1999, 4, 429-438.                                                                                                                | 8.8 | 124       |
| 54 | Stage-Specific Substrate Phosphorylation by a Ca2+/Calmodulin-Dependent Protein Kinase in<br>Trypanosoma cruzi. Journal of Eukaryotic Microbiology, 1998, 45, 392-396.                                                                                 | 1.7 | 12        |

| #  | Article                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Protein kinase activity in different stages of potato (Solanum tuberosum L.) microtuberization. Plant<br>Cell Reports, 1997, 16, 426-429. | 5.6 | 13        |
| 56 | Changes in Calcium-Dependent Protein Kinase Activity during in Vitro Tuberization in Potato. Plant<br>Physiology, 1996, 112, 1541-1550.   | 4.8 | 50        |
| 57 | Do aphid-resistant soybeans need insecticides for maximum yields?. , 0, , .                                                               |     | 0         |