Fanxin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/782713/publications.pdf Version: 2024-02-01

FANYINLU

#	Article	IF	CITATIONS
1	Observation of in-plane exciton–polaritons in monolayer WSe ₂ driven by plasmonic nanofingers. Nanophotonics, 2022, 11, 3149-3157.	6.0	4
2	Improving Aluminum Ultraviolet Plasmonic Activity through a 1 nm ta-C Film. ACS Applied Materials & Interfaces, 2021, 13, 7672-7679.	8.0	5
3	A Tantalum Disulfide Charge-Density-Wave Stochastic Artificial Neuron for Emulating Neural Statistical Properties. Nano Letters, 2021, 21, 3465-3472.	9.1	15
4	Demonstration of microwave plasmonic-like vortices with tunable topological charges by a single metaparticle. Applied Physics Letters, 2021, 118, .	3.3	9
5	Plasmonic dye-sensitized solar cells through collapsible gold nanofingers. Nanotechnology, 2021, 32, 355301.	2.6	3
6	Dualâ€Electromagnetic Field Enhancements through Suspended Metal/Dielectric/Metal Nanostructures and Plastic Phthalates Detection in Child Urine. Advanced Optical Materials, 2020, 8, 1901305.	7.3	14
7	Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps with Sub-nanometer Precision. ACS Nano, 2020, 14, 14769-14778.	14.6	33
8	Memristive Device Characteristics Engineering by Controlling the Crystallinity of Switching Layer Materials. ACS Applied Electronic Materials, 2020, 2, 1529-1537.	4.3	7
9	High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation. Nature Electronics, 2020, 3, 466-472.	26.0	150
10	Fluidic Flow Assisted Deterministic Folding of Van der Waals Materials. Advanced Functional Materials, 2020, 30, 1908691.	14.9	5
11	Linear Dichroism Conversion in Quasiâ€1D Perovskite Chalcogenide. Advanced Materials, 2019, 31, e1902118.	21.0	41
12	Thermal stability of ultrathin and high dielectric ta films coated with Ag nanostructures for SERS. Journal of Raman Spectroscopy, 2018, 49, 431-437.	2.5	3
13	Dynamically Tunable Electromagnetically Induced Transparency in Graphene and Split-Ring Hybrid Metamaterial. Plasmonics, 2018, 13, 451-457.	3.4	18
14	Molecule Sensing: Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing (Small 33/2018). Small, 2018, 14, 1870152.	10.0	2
15	Sculpting Extreme Electromagnetic Field Enhancement in Free Space for Molecule Sensing. Small, 2018, 14, e1801146.	10.0	36
16	Efficient Generation of Microwave Plasmonic Vortices via a Single Deep‣ubwavelength Metaâ€Particle. Laser and Photonics Reviews, 2018, 12, 1800010.	8.7	32
17	Engineering the Complex-Valued Constitutive Parameters of Metamaterials for Perfect Absorption. Nanoscale Research Letters, 2017, 12, 276.	5.7	7
18	Toroidal Dipolar Excitation in Metamaterials Consisting of Metal nanodisks and a Dielectrc Spacer on Metal Substrate. Scientific Reports, 2017, 7, 582.	3.3	18

Fanxin Liu

#	Article	IF	CITATIONS
19	Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. ACS Nano, 2017, 11, 5836-5843.	14.6	35
20	Atomically Thin Femtojoule Memristive Device. Advanced Materials, 2017, 29, 1703232.	21.0	147
21	Toroidal Dipolar Response in Metamaterials Composed of Metal–Dielectric–Metal Sandwich Magnetic Resonators. IEEE Photonics Journal, 2016, 8, 1-9.	2.0	10
22	Graphene-based Superlens for Subwavelength Optical Imaging by Graphene Plasmon Resonances. Plasmonics, 2016, 11, 515-522.	3.4	6
23	A facile highâ€performance SERS substrate based on broadband nearâ€perfect optical absorption. Journal of Raman Spectroscopy, 2015, 46, 795-801.	2.5	19
24	Ultrathin amorphous silicon thin-film solar cells by magnetic plasmonic metamaterial absorbers. RSC Advances, 2015, 5, 81866-81874.	3.6	22
25	Released Plasmonic Electric Field of Ultrathin Tetrahedral-Amorphous-Carbon Films Coated Ag Nanoparticles for SERS. Scientific Reports, 2015, 4, 4494.	3.3	21
26	A new dielectric ta-C film coating of Ag-nanoparticle hybrids to enhance TiO ₂ photocatalysis. Nanotechnology, 2014, 25, 125703.	2.6	7
27	Si seed layer thickness effect on the structure of ultrathin tetrahedral amorphous carbon films. Surface and Coatings Technology, 2013, 235, 117-120.	4.8	5
28	Silver macroâ€ŧexture substrates fabricated by plasma selective etching for surfaceâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2013, 44, 393-400.	2.5	5
29	A Strategy for the Maximum Fluorescence Enhancement Based on Tetrahedral Amorphous Carbon-Coated Metal Substrates. Journal of Physical Chemistry C, 2010, 114, 9871-9875.	3.1	15
30	Ultrathin Diamond-like Carbon Film Coated Silver Nanoparticles-Based Substrates for Surface-Enhanced Raman Spectroscopy. ACS Nano, 2010, 4, 2643-2648.	14.6	96