
Douglas B Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7826557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Regional Coupled Suite (RCS-IND1): application of a flexible regional coupled modelling framework to the Indian region at kilometre scale. Geoscientific Model Development, 2022, 15, 4193-4223.	1.3	4
2	Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations. Hydrology and Earth System Sciences, 2022, 26, 3151-3175.	1.9	3
3	Representation of the phosphorus cycle in the Joint UK Land Environment Simulator (vn5.5_JULES-CNP). Geoscientific Model Development, 2022, 15, 5241-5269.	1.3	12
4	Advances in Land Surface Modelling. Current Climate Change Reports, 2021, 7, 45-71.	2.8	43
5	Using Gravity Recovery and Climate Experiment data to derive corrections to precipitation data sets and improve modelled snow mass at high latitudes. Hydrology and Earth System Sciences, 2020, 24, 1763-1779.	1.9	4
6	Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytologist, 2018, 218, 1462-1477.	3.5	67
7	Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrology and Earth System Sciences, 2017, 21, 1189-1224.	1.9	50
8	Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results. Earth System Dynamics, 2015, 6, 435-445.	2.7	40
9	A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties. Earth System Dynamics, 2015, 6, 447-460.	2.7	38
10	Quantifying uncertainties in soil carbon responses to changes in global mean temperature and precipitation. Earth System Dynamics, 2014, 5, 197-209.	2.7	53
11	Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3280-3285.	3.3	458
12	Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM project in summer 2012. Atmospheric Chemistry and Physics, 2014, 14, 13159-13174.	1.9	39
13	First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3257-3261.	3.3	246
14	Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3262-3267.	3.3	583
15	Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3245-3250.	3.3	1,282
16	Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3233-3238.	3.3	149
17	The future for global water assessment. Journal of Hydrology, 2014, 518, 186-193.	2.3	39
18	Comparison of the HadGEM2 climate-chemistry model against in situ and SCIAMACHY atmospheric methane data. Atmospheric Chemistry and Physics, 2014, 14, 13257-13280	1.9	29

DOUGLAS B CLARK

#	Article	lF	CITATIONS
19	A shrub bending model to calculate the albedo of shrub-tundra. Hydrological Processes, 2014, 28, 341-351.	1.1	31
20	An explicit and computationally efficient method to initialise first-order-based soil organic matter models—The Geometric Series Solution (GSS). Ecological Modelling, 2013, 267, 48-53.	1.2	2
21	Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. Journal of Applied Ecology, 2013, 50, 561-571.	1.9	102
22	Global Multimodel Analysis of Drought in Runoff for the Second Half of the Twentieth Century. Journal of Hydrometeorology, 2013, 14, 1535-1552.	0.7	58
23	A multi-model analysis of risk of ecosystem shifts under climate change. Environmental Research Letters, 2013, 8, 044018.	2.2	69
24	Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth System Dynamics, 2013, 4, 129-144.	2.7	285
25	Comparing projections of future changes in runoff from hydrological and biome models in ISI-MIP. Earth System Dynamics, 2013, 4, 359-374.	2.7	74
26	A joint analysis of modeled soil moisture fields and satellite observations. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6771-6782.	1.2	19
27	Comparing Large-Scale Hydrological Model Simulations to Observed Runoff Percentiles in Europe. Journal of Hydrometeorology, 2012, 13, 604-620.	0.7	135
28	Detection of open water dynamics with ENVISAT ASAR in support of land surface modelling at high latitudes. Biogeosciences, 2012, 9, 703-714.	1.3	69
29	A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale. Geoscientific Model Development, 2011, 4, 255-269.	1.3	112
30	Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results. Journal of Hydrometeorology, 2011, 12, 869-884.	0.7	466
31	The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geoscientific Model Development, 2011, 4, 677-699.	1.3	993
32	The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscientific Model Development, 2011, 4, 701-722.	1.3	804
33	How Well Do Large-Scale Models Reproduce Regional Hydrological Extremes in Europe?. Journal of Hydrometeorology, 2011, 12, 1181-1204.	0.7	83
34	Wetland inundation dynamics in a model of land surface climate: Evaluation in the Niger inland delta region. Journal of Geophysical Research, 2010, 115, .	3.3	56
35	Evaluating the Simulated Seasonality of Soil Moisture with Earth Observation Data. Journal of Hydrometeorology, 2009, 10, 1548-1560.	0.7	5
36	U.K. HiGEM: The New U.K. High-Resolution Global Environment Model—Model Description and Basic Evaluation. Journal of Climate, 2009, 22, 1861-1896.	1.2	214

DOUGLAS B CLARK

#	Article	IF	CITATIONS
37	Representing the effects of subgrid variability of soil moisture on runoff generation in a land surface model. Journal of Geophysical Research, 2008, 113, .	3.3	55
38	Feedback between the Land Surface and Rainfall at Convective Length Scales. Journal of Hydrometeorology, 2004, 5, 625-639.	0.7	54
39	Simulation of high-latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e). Global and Planetary Change, 2003, 38, 1-30.	1.6	194
40	Simulation of high latitude hydrological processes in the Torne–Kalix basin: PILPS Phase 2(e). Global and Planetary Change, 2003, 38, 31-53.	1.6	106
41	Developments in the MOSES 2 land-surface model for PILPS 2e. Global and Planetary Change, 2003, 38, 161-164.	1.6	43
42	Modeling the Impact of Land Surface Degradation on the Climate of Tropical North Africa. Journal of Climate, 2001, 14, 1809-1822.	1.2	90
43	The diurnal cycle and African easterly waves: A land surface perspective. Quarterly Journal of the Roval Meteorological Society, 2001, 127, 845-867,	1.0	30