Nic E Savaskan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7826231/publications.pdf

Version: 2024-02-01

81 4,892 37
papers citations h-index

37 67
h-index g-index

98753

84 84 all docs docs citations

84 times ranked 7056 citing authors

#	Article	IF	CITATIONS
1	MCT4 Promotes Tumor Malignancy in F98 Glioma Cells. Journal of Oncology, 2021, 2021, 1-20.	0.6	7
2	Therapeutic Potential of Selenium in Glioblastoma. Frontiers in Neuroscience, 2021, 15, 666679.	1.4	11
3	The Acidic Brain—Glycolytic Switch in the Microenvironment of Malignant Glioma. International Journal of Molecular Sciences, 2021, 22, 5518.	1.8	24
4	Chemical hybridization of sulfasalazine and dihydroartemisinin promotes brain tumor cell death. Scientific Reports, 2021, 11, 20766.	1.6	8
5	Ferroptosis and Cell Death Analysis by Flow Cytometry. Methods in Molecular Biology, 2017, 1601, 71-77.	0.4	20
6	ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene, 2017, 36, 5593-5608.	2.6	275
7	Chemotherapeutic xCT inhibitors sorafenib and erastin unraveled with the synaptic optogenetic function analysis tool. Cell Death Discovery, 2017, 3, 17030.	2.0	30
8	Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6, e371-e371.	2.1	422
9	The oxido-metabolic driver ATF4 enhances temozolamide chemo-resistance in human gliomas. Oncotarget, 2017, 8, 51164-51176.	0.8	57
10	Cytotoxic profiling of artesunic and betulinic acids and their synthetic hybrid compound on neurons and gliomas. Oncotarget, 2017, 8, 61457-61474.	0.8	24
11	Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis. Oncotarget, 2016, 7, 74630-74647.	0.8	95
12	Epigenetics in Brain Tumors: HDACs Take Center Stage. Current Neuropharmacology, 2016, 14, 48-54.	1.4	21
13	Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema. Oncotarget, 2016, 7, 36021-36033.	0.8	96
14	Identification of two novel Chlorotoxin derivatives CA4 and CTX-23 with chemotherapeutic and anti-angiogenic potential. Scientific Reports, 2016, 6, 19799.	1.6	22
15	Plasticity Related Gene 3 (PRG3) overcomes myelin-associated growth inhibition and promotes functional recovery after spinal cord injury. Aging, 2016, 8, 2463-2487.	1.4	18
16	Hidden association of Cowden syndrome, PTEN mutation and meningioma frequency. Oncoscience, 2016, 3, 149-155.	0.9	35
17	A versatile <i>ex vivo</i> technique for assaying tumor angiogenesis and microglia in the brain. Oncotarget, 2016, 7, 1838-1853.	0.8	24
18	Supra-complete surgery <i>via</i> dual intraoperative visualization approach (DiVA) prolongs patient survival in glioblastoma. Oncotarget, 2016, 7, 25755-25768.	0.8	69

#	Article	IF	CITATIONS
19	PRG3 induces Ras-dependent oncogenic cooperation in gliomas. Oncotarget, 2016, 7, 26692-26708.	0.8	9
20	Cabazitaxel operates anti-metastatic and cytotoxic via apoptosis induction and stalls brain tumor angiogenesis. Oncotarget, 2016, 7, 38306-38318.	0.8	20
21	Adaptive Immune Response to and Survival Effect of Temozolomide- and Valproic Acid-induced Autophagy in Glioblastoma. Anticancer Research, 2016, 36, 899-905.	0.5	15
22	Intraoperative vascular DIVA surgery reveals angiogenic hotspots in tumor zones of malignant gliomas. Scientific Reports, 2015, 5, 7958.	1.6	29
23	A new functional classification system (FGA/B) with prognostic value for glioma patients. Scientific Reports, 2015, 5, 12373.	1.6	7
24	Sunitinib impedes brain tumor progression and reduces tumorâ€induced neurodegeneration in the microenvironment. Cancer Science, 2015, 106, 160-170.	1.7	28
25	Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biology and Therapy, 2015, 16, 1205-1213.	1.5	71
26	Neurodegeneration in the Brain Tumor Microenvironment: Glutamate in the Limelight. Current Neuropharmacology, 2015, 13, 258-265.	1.4	27
27	Dexamethasone Alleviates Tumor-Associated Brain Damage and Angiogenesis. PLoS ONE, 2014, 9, e93264.	1.1	51
28	The impact of dietary isoflavonoids on malignant brain tumors. Cancer Medicine, 2014, 3, 865-877.	1.3	32
29	Selenium Action in Neuro-Oncology. Biological Trace Element Research, 2014, 161, 246-254.	1.9	34
30	Histone deacetylases inhibition by SAHA/Vorinostat normalizes the glioma microenvironment via xCT equilibration. Scientific Reports, 2014, 4, 6226.	1.6	20
31	Surgical resection of malignant gliomasâ€"role in optimizing patient outcome. Nature Reviews Neurology, 2013, 9, 141-151.	4.9	133
32	Brain Miffed by Macrophage Migration Inhibitory Factor. International Journal of Cell Biology, 2012, 2012, 1-11.	1.0	29
33	Homeostatic regulation of NCAM polysialylation is critical for correct synaptic targeting. Cellular and Molecular Life Sciences, 2012, 69, 1179-1191.	2.4	19
34	Selenium and Selenoproteins in Neuroprotection and Neuronal Cell Death., 2012,, 525-536.		5
35	Improving the Extent of Malignant Glioma Resection by Dual Intraoperative Visualization Approach. PLoS ONE, 2012, 7, e44885.	1.1	97
36	Synaptic PRG-1 Modulates Excitatory Transmission via Lipid Phosphate-Mediated Signaling. Cell, 2011, 146, 1043.	13.5	0

#	Article	IF	CITATIONS
37	Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas. Oncogene, 2011, 30, 43-53.	2.6	39
38	xCT modulation in gliomas: Relevance to energy metabolism and tumor microenvironment normalization. Annals of Anatomy, 2010, 192, 309-313.	1.0	35
39	Plasticity-related Gene 5 (<i>PRG5</i>) Induces Filopodia and Neurite Growth and Impedes Lysophosphatidic Acid– and Nogo-A–mediated Axonal Retraction. Molecular Biology of the Cell, 2010, 21, 521-537.	0.9	42
40	Rac controls PIP5K localisation and PtdIns(4,5) <i>P</i> localisation and neurite dynamics. Journal of Cell Science, 2010, 123, 3535-3546.	1.2	41
41	The x cystine/glutamate antiporter (xCT) as a potential target for therapy of cancer: Yet another cytotoxic anticancer approach?. Journal of Cellular Physiology, 2009, 220, 531-532.	2.0	10
42	High resolution neurochemical gold staining method for myelin in peripheral and central nervous system at the light- and electron-microscopic level. Cell and Tissue Research, 2009, 337, 213-221.	1.5	19
43	Cellular characterization of the peritumoral edema zone in malignant brain tumors. Cancer Science, 2009, 100, 1856-1862.	1.7	79
44	Synaptic PRG-1 Modulates Excitatory Transmission via Lipid Phosphate-Mediated Signaling. Cell, 2009, 138, 1222-1235.	13.5	124
45	Biochemical analysis of selenoprotein expression in brain cell lines and in distinct brain regions. Cell and Tissue Research, 2008, 332, 403-414.	1.5	16
46	Small interfering RNA–mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nature Medicine, 2008, 14, 629-632.	15.2	166
47	Comparative Analysis of Selenocysteine Machinery and Selenoproteome Gene Expression in Mouse Brain Identifies Neurons as Key Functional Sites of Selenium in Mammals. Journal of Biological Chemistry, 2008, 283, 2427-2438.	1.6	151
48	Molecular biology of glutathione peroxidase 4: from genomic structure to developmental expression and neural function. Biological Chemistry, 2007, 388, 1007-1017.	1.2	100
49	Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: Specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radical Biology and Medicine, 2007, 43, 191-201.	1.3	84
50	The Role of Selenite on Microglial Migration. Annals of the New York Academy of Sciences, 2007, 1096, 179-183.	1.8	20
51	Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cellular and Molecular Life Sciences, 2007, 64, 230-243.	2.4	100
52	Improved outcome of facial nerve repair in rats is associated with enhanced regenerative response of motoneurons and augmented neocortical plasticity. European Journal of Neuroscience, 2006, 24, 2152-2162.	1.2	40
53	The Role of Phospholipid Hydroperoxide Glutathione Peroxidase Isoforms in Murine Embryogenesis. Journal of Biological Chemistry, 2006, 281, 19655-19664.	1.6	79
54	Experimental therapy of malignant gliomas using the inhibitor of histone deacetylase MS-275. Molecular Cancer Therapeutics, 2006, 5, 1248-1255.	1.9	65

#	Article	IF	Citations
55	Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo. Journal of Neurochemistry, 2005, 93, 992-999.	2.1	111
56	Neurotractin/kilon promotes neurite outgrowth and is expressed on reactive astrocytes after entorhinal cortex lesion. Molecular and Cellular Neurosciences, 2005, 29, 580-590.	1.0	73
57	The Neurobiology of Selenium: Lessons from Transgenic Mice. Journal of Nutrition, 2004, 134, 707-710.	1.3	90
58	Molecular Actions of Selenium in the Brain: Neuroprotective Mechanisms of an Essential Trace Element. Reviews in the Neurosciences, 2004, 15, 19-32.	1.4	37
59	Green Tea Epigallocatechin-3-Gallate Mediates T Cellular NF-ÎB Inhibition and Exerts Neuroprotection in Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 173, 5794-5800.	0.4	314
60	Reply to 'Is PRG-1 a new lipid phosphatase?'. Nature Neuroscience, 2004, 7, 789-790.	7.1	8
61	Molecular cloning and expression regulation of PRG-3, a new member of the plasticity-related gene family. European Journal of Neuroscience, 2004, 19, 212-220.	1.2	59
62	Selenium and brain function: a poorly recognized liaison. Brain Research Reviews, 2004, 45, 164-178.	9.1	281
63	Identification of macrophage/microglia activation factor (MAF) associated with late endosomes/lysosomes in microglial cells. FEBS Letters, 2004, 563, 41-48.	1.3	13
64	A new phospholipid phosphatase, PRC-1, is involved in axon growth and regenerative sprouting. Nature Neuroscience, 2003, 6, 572-578.	7.1	119
65	Cholecystokinin expression after hippocampal deafferentiation: molecular evidence revealed by differential display-reverse transcription–polymerase chain reaction. Neuroscience, 2003, 121, 111-121.	1.1	10
66	Identification of neuronal cell death in a model of degeneration in the hippocampus. Brain Research Protocols, 2003 , 11 , 1 -8.	1.7	34
67	Selenium deficiency increases susceptibility to glutamateâ€induced excitotoxicity. FASEB Journal, 2003, 17, 112-114.	0.2	147
68	Molecular analysis of Nogo expression in the hippocampus during development and following lesion and seizure 1. FASEB Journal, 2003, 17, 1153-1155.	0.2	69
69	Regulation of Expression of the Phospholipid Hydroperoxide/Sperm Nucleus Glutathione Peroxidase Gene. Journal of Biological Chemistry, 2003, 278, 2571-2580.	1.6	52
70	Impaired postnatal development of hippocampal neurons and axon projections in the Emx2-/- mutants. Journal of Neurochemistry, 2002, 83, 1196-1207.	2.1	9
71	Perforant path lesion induces up-regulation of stathmin messenger RNA, but not SCG10 messenger RNA, in the adult rat hippocampus. Neuroscience, 2001, 102, 515-526.	1.1	15
72	Molecular and functional analysis of hyperpolarizationâ€activated pacemaker channels in the hippocampus after entorhinal cortex lesion. FASEB Journal, 2001, 15, 2689-2701.	0.2	49

#	Article	IF	CITATIONS
73	Molecules Involved in Reactive Sprouting in the Hippocampus. Reviews in the Neurosciences, 2001, 12, 195-215.	1.4	36
74	IG-molecule Kilon shows differential expression pattern from LAMP in the developing and adult rat hippocampus. Hippocampus, 2000, 10, 632-644.	0.9	13
75	Outgrowth-promoting molecules in the adult hippocampus after perforant path lesion. European Journal of Neuroscience, 2000, 12, 1024-1032.	1.2	9
76	Entorhinal cortex lesion studied with the novel dye Fluoro-Jade. Brain Research, 2000, 864, 44-51.	1.1	25
77	Sema3C and Netrin-1 Differentially Affect Axon Growth in the Hippocampal Formation. Molecular and Cellular Neurosciences, 2000, 15, 141-155.	1.0	71
78	A Role for the Eph Ligand Ephrin-A3 in Entorhino-Hippocampal Axon Targeting. Journal of Neuroscience, 1999, 19, 8885-8893.	1.7	75
79	Myelin does not influence the choice behaviour of entorhinal axons but strongly inhibits their outgrowth lengthinâ€∫vitro. European Journal of Neuroscience, 1999, 11, 316-326.	1.2	17
80	Semaphorin D acts as a repulsive factor for entorhinal and hippocampal neurons. European Journal of Neuroscience, 1999, 11, 729-734.	1.2	50
81	Target- and Maturation-Specific Membrane-Associated Molecules Determine the Ingrowth of Entorhinal Fibers into the Hippocampus. Developmental Biology, 1999, 211, 277-292.	0.9	11