Daniel Alquier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7825134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing the electrical activity of individual ZnO nanowires thermally annealed in air. Nanoscale Advances, 2022, 4, 1125-1135.	4.6	3
2	Integrating porous silicon layer backing to capacitive micromachined ultrasonic transducers (CMUT)-based linear arrays for acoustic Lamb wave attenuation. Journal of Applied Physics, 2022, 131, 105107.	2.5	0
3	Fabrication of Piezoelectric ZnO Nanowires Energy Harvester on Flexible Substrate Coated with Various Seed Layer Structures. Nanomaterials, 2021, 11, 1433.	4.1	15
4	Broad bandwidth air-coupled micromachined ultrasonic transducers for gas sensing. Ultrasonics, 2021, 114, 106410.	3.9	15
5	Influence of topology and diode characteristics of AC-DC converters for low power piezoelectric energy harvesting. Sensors and Actuators A: Physical, 2021, 330, 112901.	4.1	4
6	Editorial for the Special Issue on SiC Based Miniaturized Devices. Micromachines, 2020, 11, 405.	2.9	0
7	A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators. Materials, 2019, 12, 2511.	2.9	12
8	Effect of the excitation waveform on the average power and peak power delivered by a piezoelectric generator. Mechanical Systems and Signal Processing, 2019, 133, 106278.	8.0	3
9	Stability evaluation of ZnO nanosheet based source-gated transistors. Scientific Reports, 2019, 9, 2979.	3.3	25
10	Deposition Time and Annealing Effects of ZnO Seed Layer on Enhancing Vertical Alignment of Piezoelectric ZnO Nanowires. Chemosensors, 2019, 7, 7.	3.6	21
11	High Frequency Gas Detection With an Uncoated CMUT Array by Impedance Resonant Frequency Measurement. , 2019, , .		0
12	Effects of Aluminum Incorporation on the Young's Modulus of 3C-SiC Epilayers. Materials Science Forum, 2019, 963, 305-308.	0.3	1
13	Investigation of the Young's Modulus and the Residual Stress of 4H-SiC Circular Membranes on 4H-SiC Substrates. Micromachines, 2019, 10, 801.	2.9	12
14	Flexible CMUT for Vibrating Mesh Nebulize. , 2019, , .		1
15	Challenges of low-temperature synthesized ZnO nanostructures and their integration into nano-systems. Materials Science in Semiconductor Processing, 2019, 91, 404-408.	4.0	11
16	Performance Evaluation of CMUT-Based Ultrasonic Transformers for Galvanic Isolation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 617-629.	3.0	13
17	Double buffer circuit for the characterization of piezoelectric nanogenerators based on ZnO nanowires. Applied Physics Letters, 2018, 112, .	3.3	21
18	Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Selfâ€Powered Wearable Electronics. Advanced Materials Technologies, 2018, 3, 1700249.	5.8	107

#	Article	IF	CITATIONS
19	CMUT-Based Single Element Transducer Applied to 1D Transient Ultrasound Elastography. , 2018, , .		1
20	Photoluminescence Study of the Influence of Additive Ammonium Hydroxide in Hydrothermally Grown ZnO Nanowires. Nanoscale Research Letters, 2018, 13, 249.	5.7	14
21	Zinc oxide nanowire-parylene nanocomposite based stretchable piezoelectric nanogenerators for self-powered wearable electronics. Journal of Physics: Conference Series, 2018, 1052, 012028.	0.4	6
22	CMUT Based Air Coupled Transducers for Gas-Mixture Analysis. , 2018, , .		4
23	A simple non-recessed and Au-free high quality Ohmic contacts on AlGaN/GaN: The case of Ti/Al alloy. Materials Science in Semiconductor Processing, 2018, 78, 107-110.	4.0	17
24	Turning the undesired voids in silicon into a tool: In-situ fabrication of free-standing 3C-SiC membranes. Applied Physics Letters, 2017, 110, 081602.	3.3	5
25	An editorial on the recent advances in high and low temperature electronics. Semiconductor Science and Technology, 2017, 32, 080201.	2.0	2
26	Impact of rapid thermal annealing on Mg-implanted GaN with a SiO _{<i>x</i>} /AlN cap-layer. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600438.	1.8	5
27	Flexible Organic/Inorganic Hybrid Field-Effect Transistors with High Performance and Operational Stability. ACS Applied Materials & Interfaces, 2017, 9, 573-584.	8.0	32
28	Spring E-MRS 2016 Symposium L "Wide bandgap materials for electron devices― Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1770124.	1.8	0
29	A facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations. Scientific Reports, 2017, 7, 15187.	3.3	59
30	A detailed study of AlN and GaN grown on silicon-on-porous silicon substrate. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600450.	1.8	5
31	Laser irradiation influence on Si/3C-SiC/Si heterostructures for subsequent 3C-SiC membrane elaboration. MRS Advances, 2016, 1, 3649-3654.	0.9	2
32	DLTS analysis of high resistive edge termination techniqueâ€induced defects in GaNâ€based Schottky barrier diodes. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2364-2370.	1.8	7
33	Realization of minimum number of rotational domains in heteroepitaxied Si(110) on 3C-SiC(001). Applied Physics Letters, 2016, 108, 011608.	3.3	4
34	Optimized plasma-polymerized fluoropolymer mask for local porous silicon formation. Journal of Applied Physics, 2016, 119, 213301.	2.5	4
35	On the interplay between Si(110) epilayer atomic roughness and subsequent 3C-SiC growth direction. Journal of Applied Physics, 2016, 120, .	2.5	3
36	Porous silicon as backing material for Capacitive Micromachined Ultrasonic Transducers. , 2016, , .		1

#	Article	IF	CITATIONS
37	Representation of CMUT-based isolation transformer by means of an electrical two-port network. , 2016, , .		1
38	Temperature dependence of charge transport in zinc oxide nanosheet source-gated transistors. Thin Solid Films, 2016, 617, 114-119.	1.8	5
39	Measurement of Spurious Voltages in ZnO Piezoelectric Nanogenerators. Journal of Microelectromechanical Systems, 2016, 25, 533-541.	2.5	18
40	Etching optimization of post aluminum-silicon thermomigration process residues. Microelectronic Engineering, 2016, 149, 97-105.	2.4	7
41	Gallium nitride surface protection during RTA annealing with a GaO _x N _y cap-layer. Semiconductor Science and Technology, 2016, 31, 045008.	2.0	4
42	Universal model for defect-related visible luminescence in ZnO nanorods. RSC Advances, 2016, 6, 73170-73175.	3.6	16
43	Novel 3C-SiC Microstructure for MEMS Applications. Materials Science Forum, 2016, 858, 723-728.	0.3	1
44	Low temperature capacitive micromachined ultrasonic transducers (cMUTs) on glass substrate. Journal of Micromechanics and Microengineering, 2016, 26, 115023.	2.6	2
45	Single-crystalline ZnO sheet Source-Gated Transistors. Scientific Reports, 2016, 6, 19232.	3.3	33
46	Sourceâ€gating effect in hydrothermally grown ZnO nanowire transistors. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2438-2445.	1.8	7
47	Porosity and thickness characterization of porous Si and oxidized porous Si layers – An ultraviolet–visible–mid infrared ellipsometry study. Microporous and Mesoporous Materials, 2016, 227, 112-120.	4.4	16
48	Two-dimensional dopant profiling of gallium nitride p–n junctions by scanning capacitance microscopy. Nuclear Instruments & Methods in Physics Research B, 2016, 372, 67-71.	1.4	3
49	Modeling and Characterization of cMUT-based Devices Applied to Galvanic Isolation. Physics Procedia, 2015, 70, 987-991.	1.2	2
50	Fabrication of ZnO Nanowire Based Piezoelectric Generators and Related Structures. Physics Procedia, 2015, 70, 858-862.	1.2	43
51	Zinc oxide sheet field-effect transistors. Applied Physics Letters, 2015, 107, 033105.	3.3	19
52	cMUT technology applied to galvanic isolation: Theory and experiments. , 2015, , .		2
53	Fabrication and Characterization of ZnO Nanowire-based Piezoelectric Nanogenerators for Low Frequency Mechanical Energy Harvesting. Physics Procedia, 2015, 70, 909-913.	1.2	27
54	Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires. Nanotechnology, 2015, 26, 355704.	2.6	25

#	Article	IF	CITATIONS
55	Toward high-quality 3C–SiC membrane on a 3C–SiC pseudo-substrate. Materials Letters, 2015, 160, 28-30.	2.6	6
56	Fabrication of field-effect transistors and functional nanogenerators using hydrothermally grown ZnO nanowires. RSC Advances, 2015, 5, 69925-69931.	3.6	29
57	Surface state of GaN after rapid-thermal-annealing using AlN cap-layer. Applied Surface Science, 2015, 355, 1044-1050.	6.1	9
58	Direct insight into grains formation in Si layers grown on 3C-SiC by chemical vapor deposition. Acta Materialia, 2015, 98, 336-342.	7.9	13
59	Electrothermally driven high-frequency piezoresistive SiC cantilevers for dynamic atomic force microscopy. Journal of Applied Physics, 2014, 116, .	2.5	15
60	Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst. Nanoscale Research Letters, 2014, 9, 379.	5.7	25
61	Characterization of in-depth cavity distribution after thermal annealing of helium-implanted silicon and gallium nitride. Thin Solid Films, 2014, 571, 567-572.	1.8	1
62	Progresses in cMUT device fabrication using low temperature processes. Journal of Micromechanics and Microengineering, 2014, 24, 045020.	2.6	11
63	Original 3C-SiC micro-structure on a 3C–SiC pseudo-substrate. Microelectronic Engineering, 2013, 105, 65-67.	2.4	15
64	Delta-Doping of Epitaxial GaN Layers on Large Diameter Si(111) Substrates. Applied Physics Express, 2012, 5, 025504.	2.4	9
65	Fabrication Issues of 4H-SiC Static Induction Transistors. Materials Science Forum, 2012, 717-720, 1049-1052.	0.3	6
66	Investigations on the Origin of the Ohmic Behavior for Ti/Al Based Contacts on n-Type GaN. Materials Science Forum, 2012, 711, 208-212.	0.3	3
67	Ti Thickness Influence for Ti/Ni Ohmic Contacts on N-Type 3C-SiC. Materials Science Forum, 2012, 711, 179-183.	0.3	5
68	Detailed Experimental Study of Mean and Gradient Stresses in Thin 3C-SiC Films Performed Using Micromachined Cantilevers. Materials Science Forum, 2012, 711, 84-88.	0.3	1
69	Design, characterization and test of a multi-transmitters, multi-receivers probe based on cMUTs for cortical bone evaluation. , 2012, , .		0
70	Recent Progresses in GaN Power Rectifier. Japanese Journal of Applied Physics, 2012, 51, 01AG08.	1.5	7
71	Experimental observation and analytical model of the stress gradient inversion in 3C-SiC layers on silicon. Journal of Applied Physics, 2012, 111, .	2.5	21
72	TiAl Ohmic contact on GaN, <i>in situ</i> high or low doped or Si implanted, epitaxially grown on sapphire or silicon. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1059-1066.	1.8	7

#	Article	IF	CITATIONS
73	A new approach for AFM cantilever elaboration with 3C-SiC. Materials Letters, 2012, 77, 54-56.	2.6	15
74	Si implanted reactivation in GaN grown on sapphire using AlN and oxide cap layers. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 137-140.	1.4	12
75	Carrier profiling in Si-implanted gallium nitride by Scanning Capacitance Microscopy. Nuclear Instruments & Methods in Physics Research B, 2012, 275, 37-40.	1.4	5
76	Recent Progresses in GaN Power Rectifier. Japanese Journal of Applied Physics, 2012, 51, 01AG08.	1.5	8
77	Structural and electrical characterizations of n-type implanted layers and ohmic contacts on 3C-SiC. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2020-2025.	1.4	14
78	Low temperature (down to 450 °C) annealed TiAl contacts on Nâ€ŧype gallium nitride characterized by differential scanning calorimetry. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 447-449.	0.8	6
79	Analytical Model of Stress Relaxation in 3C SiC Layers on Silicon. Materials Science Forum, 2011, 679-680, 79-82.	0.3	3
80	Ti–Ni ohmic contacts on 3C–SiC doped by nitrogen or phosphorus implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 171, 120-126.	3.5	16
81	Ni based planar Schottky diodes on gallium nitride (GaN) grown on sapphire. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 112-115.	0.8	15
82	Micromachining of thin 3C-SiC films for mechanical properties investigation. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	14
83	Active Devices for Power Electronics: SiC vs III-N Compounds – The Case of Schottky Rectifiers. Materials Science Forum, 2010, 645-648, 879-884.	0.3	3
84	Evidence of electrical activity of extended defects in 3C–SiC grown on Si. Applied Physics Letters, 2010, 96, .	3.3	65
85	Evaluation of the Crystalline Quality of Strongly Curved 3C-SiCâ^•Si Epiwafers Through X-Ray Diffraction Analyses. , 2010, , .		Ο
86	High Quality Ohmic Contacts on n-type 3C-SiC Obtained by High and Low Process Temperature. , 2010, , .		10
87	Low Stress Heteroepitaxial 3C-SiC Films Characterized by Microstructure Fabrication and Finite Elements Analysis. Journal of the Electrochemical Society, 2010, 157, H438.	2.9	20
88	Detailed study of the influence of surface misorientation on the density of Anti-Phase Boundaries in 3C-SiC layers grown on (001) silicon. , 2010, , .		6
89	Process Parameters Influence on Specific Contact Resistance (SCR) Value for TiAl Ohmic Contacts on GaN Grown on Sapphire. Materials Science Forum, 2009, 615-617, 955-958.	0.3	9
90	A study of defect evolution in multi-energy helium implanted monocrystalline and polycrystalline silicon. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 1964-1968.	0.8	2

#	Article	IF	CITATIONS
91	Evaluation of Parylene as Protection Layer for Capacitive Micromachined Ultrasonic Transducers. ECS Transactions, 2008, 11, 25-33.	0.5	4
92	Diffusion and Activation of Ultra Shallow Boron Implants in Silicon in Proximity of Voids. Solid State Phenomena, 2008, 131-133, 357-362.	0.3	2
93	Influence of a top layer on cavity formation and helium desorption in silicon. Radiation Measurements, 2008, 43, S583-S587.	1.4	2
94	Strengths and Limitations of the Vacancy Engineering Approach for the Control of Dopant Diffusion and Activation in Silicon. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	6
95	P Implantation Effect on Specific Contact Resistance in 3C-SiC Grown on Si. Materials Research Society Symposia Proceedings, 2008, 1068, 1.	0.1	2
96	Low Specific Contact Resistance to 3C-SiC Grown on (100) Si Substrates. Materials Science Forum, 2007, 556-557, 721-724.	0.3	8
97	Protection Layer Influence on Capacitive Micromachined Ultrasonic Transducers Performance. Materials Research Society Symposia Proceedings, 2007, 1052, 1.	0.1	2
98	Ultra deep trench doping in silicon by grazing incident boron implantation. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 275-278.	1.4	1
99	Modification of He implantation induced defects using fluorine co-implantation. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 240-243.	1.4	2
100	Effect of voids-controlled vacancy supersaturations on B diffusion. Nuclear Instruments & Methods in Physics Research B, 2007, 257, 249-252.	1.4	6
101	Dielectric function of disorder in high-fluence helium-implanted silicon. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 192-195.	1.4	7
102	Boron interaction with extended defects induced by He–H co-implantation in Si. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 266-270.	3.5	4
103	Boron diffusion in presence of defects induced by helium implantation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 271-274.	3.5	5
104	Impact of Hydrogen Implantation on Helium Implantation Induced Defects. Solid State Phenomena, 2005, 108-109, 309-314.	0.3	3
105	Defects Induced by Helium Implantation: Impact on Boron Diffusivity. Materials Research Society Symposia Proceedings, 2005, 864, 741.	0.1	0
106	Enhancement of He-induced cavities in silicon by hydrogen plasma treatment. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 990.	1.6	3
107	Optical models for cavity profiles in high-dose helium-implanted and annealed silicon measured by ellipsometry. Journal of Applied Physics, 2005, 97, 123514.	2.5	9
108	Interaction between dislocations and He-implantation-induced voids in GaN epitaxial layers. Applied Physics Letters, 2005, 86, 211911.	3.3	20

#	Article	IF	CITATIONS
109	Properties of Cavities Induced by Helium Implantation in Silicon and their Applications to Devices. Solid State Phenomena, 2004, 95-96, 297-306.	0.3	4
110	Dopant Segregation on Cavities Induced by Helium Implantation: Impact of the Doping Level. Solid State Phenomena, 2004, 95-96, 599-606.	0.3	0
111	Doping Effect of Helium Induced Nanocavities in Silicon. Solid State Phenomena, 2004, 95-96, 325-330.	0.3	1
112	Optimization of the fabrication of sealed capacitive transducers using surface micromachining. Journal of Micromechanics and Microengineering, 2004, 14, 299-304.	2.6	17
113	Impact of Hydrogen Plasma Treatment on Gettering by He Implantation-Induced Cavities in Silicon. Materials Research Society Symposia Proceedings, 2004, 813, 421.	0.1	1
114	Depth distribution of disorder and cavities in high dose helium implanted silicon characterized by spectroscopic ellipsometry. Thin Solid Films, 2004, 455-456, 344-348.	1.8	8
115	A simple model for boron trapping by He implantation extended defects in Si: the role of boron diffusivity. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 291-296.	1.4	14
116	Gettering by helium implantation applied to a device: impact of metal and dopant segregation. Microelectronic Engineering, 2003, 66, 496-503.	2.4	2
117	The evolution of cavities in Si co-implanted with Si and He ions1. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 102, 75-79.	3.5	4
118	Effects of Self-Ion Implantation on the Thermal Growth of He-Induced Cavities in Silicon. Solid State Phenomena, 2003, 95-96, 337-342.	0.3	0
119	Modification of MeV He Implantation-Induced Cavities in Silicon by Hydrogen Plasma Treatment. Solid State Phenomena, 2003, 95-96, 307-312.	0.3	2
120	The role of a top oxide layer in cavities formed by MeV He implantation into Si. EPJ Applied Physics, 2003, 23, 45-48.	0.7	8
121	Impact of gettering by helium implantation on boron and iron segregation. EPJ Applied Physics, 2003, 23, 41-44.	0.7	2
122	Gettering Induced by Helium Implantation: Application to a Device. Solid State Phenomena, 2002, 82-84, 279-284.	0.3	8
123	Gettering on Cavities Induced by Helium Implantation in Si: The Case of Boron. Japanese Journal of Applied Physics, 2002, 41, 3625-3628.	1.5	7
124	Defects Induced by Helium Implantation: Interaction with Boron and Phosphorus. Materials Research Society Symposia Proceedings, 2002, 719, 431.	0.1	2
125	Trapping of aluminium by dislocation loops in Si. Nuclear Instruments & Methods in Physics Research B, 2001, 178, 188-191.	1.4	1
126	Boron gettering on cavities induced by helium implantation in Si. Nuclear Instruments & Methods in Physics Research B, 2001, 183, 318-322.	1.4	13

#	Article	IF	CITATIONS
127	Dopant Segregation on Cavities Induced by Helium Implantation: The Case of Boron and Phosphorus. Solid State Phenomena, 2001, 82-84, 309-314.	0.3	5
128	Dopant - Extended Defects Interactions: The Case of Aluminum. Materials Research Society Symposia Proceedings, 2000, 610, 641.	0.1	0
129	Transient enhanced diffusion in preamorphized silicon: the role of the surface. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 257-261.	1.4	47
130	Electrically active defects in BF2+ implanted and germanium preamorphized silicon. Nuclear Instruments & Methods in Physics Research B, 1998, 134, 195-201.	1.4	11
131	The effect of the growth procedure and the InAs amount on the formation of strain-induced islands in the InAs/InP(001) system. Applied Surface Science, 1998, 123-124, 751-756.	6.1	12
132	Elastic energy of strained islands: Contribution of the substrate as a function of the island aspect ratio and inter-island distance. Applied Physics Letters, 1998, 72, 2984-2986.	3.3	30
133	Boron Ted in Pre-Amorphised SI: Role of the A/C Interface. Materials Research Society Symposia Proceedings, 1998, 532, 55.	0.1	2
134	On the «A Symmetrical» Behavior of Transient Enhanced Diffusion in Pre-Amorphised SI Wafers. Materials Research Society Symposia Proceedings, 1998, 532, 67.	0.1	9
135	Electrical Active Defects in the Band-Gap Induced by Ge-Preamorphization of Si-Substrates. Materials Research Society Symposia Proceedings, 1998, 532, 85.	0.1	0
136	Electronic Defect Levels in Ultra-Shallowp+n-Junctions Formed by Low-Energy B Ion Implantation into Ge-Preamorphized Silicon. Japanese Journal of Applied Physics, 1997, 36, 4346-4350.	1.5	7
137	Influence of Depth Position of End-of-Range Defects on Current-Voltage and Noise Characteristics of Shallow (p+/n) Junctions. Japanese Journal of Applied Physics, 1997, 36, 1999-2003.	1.5	5
138	Transient enhanced diffusion of boron in presence of end-of-range defects. Journal of Applied Physics, 1997, 82, 2855-2861.	2.5	47
139	The effect of the boron doping level on the thermal behavior of end-of-range defects in silicon. Applied Physics Letters, 1997, 71, 365-367.	3.3	33
140	Electrical Defects of Shallow (P+/N) Junctions Formed by Boron Implantation into Ge-Preamorphized Si-Substrates. Materials Research Society Symposia Proceedings, 1997, 469, 413.	0.1	1
141	Interactions between Dopants and End-of-Range Defects in Silicon. Solid State Phenomena, 1996, 47-48, 195-204.	0.3	23
142	Transient Enhanced Diffusion of Dopants in Preamorphised Si Layers. Materials Research Society Symposia Proceedings, 1996, 438, 3.	0.1	10
143	TED of boron in the presence of EOR defects: the use of the theory of Ostwald ripening to calculate Si-interstitial supersaturation in the vicinity of extrinsic defects. Nuclear Instruments & Methods in Physics Research B, 1996, 112, 129-132.	1.4	5
144	Is there an effect of the proximity of a "free-surface―on the formation of End-Of-Range defects?. Nuclear Instruments & Methods in Physics Research B, 1996, 120, 5-8.	1.4	28

#	Article	IF	CITATIONS
145	Residual Stress Measurement and Simulation of 3C-SiC Single and Poly Crystal Cantilevers. Materials Science Forum, 0, 645-648, 865-868.	0.3	4
146	Electrical Characterization of Nitrogen Implanted 3C-SiC by SSRM and CÂTLM Measurements. Materials Science Forum, 0, 679-680, 193-196.	0.3	6
147	Si ⁺ Implantation and Activation in GaN Comparison of GaN on Sapphire and GaN on Silicon. Materials Science Forum, 0, 711, 213-217.	0.3	3
148	Dose Influence on Physical and Electrical Properties of Nitrogen Implantation in 3C-SiC on Si. Materials Science Forum, 0, 711, 154-158.	0.3	4
149	Elaboration of Monocrystalline Si Thin Film on 3C-SiC(100)/Si Epilayers by Low Pressure Chemical Vapor Deposition. Materials Science Forum, 0, 711, 61-65.	0.3	7
150	ICP Etching of 4H-SiC Substrates. Materials Science Forum, 0, 740-742, 825-828.	0.3	5
151	Aluminum Implantation in 4H-SiC: Physical and Electrical Properties. Materials Science Forum, 0, 740-742, 581-584.	0.3	3
152	3C-SiC: New Interest for MEMS Devices. Materials Science Forum, 0, 806, 3-9.	0.3	3
153	Silicon Growth on 3C-SiC(001)/Si(001): Pressure Influence and Thermal Effect. Materials Science Forum, 0, 821-823, 978-981.	0.3	5
154	Structural Study of the Innovative 3C-SiC/Si/3C-SiC/Si Heterostructure for Electro-Mechanical Applications. Materials Science Forum, 0, 858, 143-146.	0.3	2
155	Influence of Aluminum Incorporation on Mechanical Properties of 3C-SiC Epilayers. Materials Science Forum, 0, 924, 318-321.	0.3	3
156	Laser Annealing Simulations of Metallisations Deposited on 4H-SiC. Materials Science Forum, 0, 963, 502-505.	0.3	4
157	Optimisation of Ti Ohmic Contacts Formed by Laser Annealing on 4H-SiC. Materials Science Forum, 0, 1062, 219-223.	0.3	2
158	Designing SiC Based CMUT Structures: An Original Approach and Related Material Issues. Materials Science Forum, 0, 1062, 94-98.	0.3	2