Bruce A. Vallance

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7825066/publications.pdf Version: 2024-02-01

		18436	23472
165	14,148	62	111
papers	citations	h-index	g-index
173	173	173	15657
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 2018, 39, 677-696.	2.9	569
2	Dissecting virulence: Systematic and functional analyses of a pathogenicity island. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3597-3602.	3.3	557
3	Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota. Science, 2012, 336, 1325-1329.	6.0	546
4	The adaptor Act1 is required for interleukin 17–dependent signaling associated with autoimmune and inflammatory disease. Nature Immunology, 2007, 8, 247-256.	7.0	507
5	Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa. PLoS Pathogens, 2010, 6, e1000902.	2.1	501
6	Control of Intestinal Homeostasis, Colitis, and Colitis-Associated Colorectal Cancer by the Inflammatory Caspases. Immunity, 2010, 32, 367-378.	6.6	461
7	Noncanonical Inflammasome Activation of Caspase-4/Caspase-11 Mediates Epithelial Defenses against Enteric Bacterial Pathogens. Cell Host and Microbe, 2014, 16, 249-256.	5.1	371
8	Dissemination of invasive <i>Salmonella</i> via bacterial-induced extrusion of mucosal epithelia. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17733-17738.	3.3	354
9	Antibiotic Treatment Alters the Colonic Mucus Layer and Predisposes the Host to Exacerbated <i>Citrobacter rodentium</i> -Induced Colitis. Infection and Immunity, 2011, 79, 1536-1545.	1.0	322
10	The Toll–Interleukin-1 Receptor Member SIGIRR Regulates Colonic Epithelial Homeostasis, Inflammation, and Tumorigenesis. Immunity, 2007, 26, 461-475.	6.6	293
11	Gut Microbiota as a Trigger for Metabolic Inflammation in Obesity and Type 2 Diabetes. Frontiers in Immunology, 2020, 11, 571731.	2.2	281
12	Severe COVID-19 Infection and Pediatric Comorbidities: A Systematic Review and Meta-Analysis. International Journal of Infectious Diseases, 2021, 103, 246-256.	1.5	239
13	Exploitation of host cells by enteropathogenic Escherichiacoli. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8799-8806.	3.3	230
14	The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nature Medicine, 1999, 5, 1178-1182.	15.2	228
15	Locus of Enterocyte Effacement from Citrobacter rodentium : Sequence Analysis and Evidence for Horizontal Transfer among Attaching and Effacing Pathogens. Infection and Immunity, 2001, 69, 6323-6335.	1.0	191
16	The Mucin Muc2 Limits Pathogen Burdens and Epithelial Barrier Dysfunction during Salmonella enterica Serovar Typhimurium Colitis. Infection and Immunity, 2013, 81, 3672-3683.	1.0	181
17	Host Susceptibility to the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium. Infection and Immunity, 2003, 71, 3443-3453.	1.0	178
18	Salmonella enterica Serovar Typhimurium Pathogenicity Island 2 Is Necessary for Complete Virulence in a Mouse Model of Infectious Enterocolitis. Infection and Immunity, 2005, 73, 3219-3227.	1.0	177

#	Article	IF	CITATIONS
19	Clearance of Citrobacter rodentium Requires B Cells but Not Secretory Immunoglobulin A (IgA) or IgM Antibodies. Infection and Immunity, 2004, 72, 3315-3324.	1.0	176
20	MyD88 signalling plays a critical role in host defence by controlling pathogen burden and promoting epithelial cell homeostasis during CitrobacterÂrodentium-induced colitis. Cellular Microbiology, 2008, 10, 618-631.	1.1	168
21	Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Molecular Microbiology, 2003, 48, 95-115.	1.2	167
22	Toll-Like Receptor 4 Dependence of Innate and Adaptive Immunity to <i>Salmonella</i> : Importance of the Kupffer Cell Network. Journal of Immunology, 2004, 172, 6202-6208.	0.4	157
23	Increased Intestinal Permeability Is Associated With Later Development of Crohn's Disease. Gastroenterology, 2020, 159, 2092-2100.e5.	0.6	156
24	Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Molecular Microbiology, 2002, 43, 1089-1103.	1.2	153
25	Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Molecular Microbiology, 2004, 49, 685-704.	1.2	145
26	Toll-Like Receptor 4 Contributes to Colitis Development but Not to Host Defense during Citrobacter rodentium Infection in Mice. Infection and Immunity, 2006, 74, 2522-2536.	1.0	141
27	Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME Journal, 2016, 10, 321-332.	4.4	140
28	Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host and Microbe, 2015, 17, 617-627.	5.1	132
29	Milk Fat Globule Membrane Supplementation in Formula Modulates the Neonatal Gut Microbiome and Normalizes Intestinal Development. Scientific Reports, 2017, 7, 45274.	1.6	132
30	Chronic Enteric Salmonella Infection in Mice Leads to Severe and Persistent Intestinal Fibrosis. Gastroenterology, 2008, 134, 768-780.e2.	0.6	130
31	TGF-β1 gene transfer to the mouse colon leads to intestinal fibrosis. American Journal of Physiology - Renal Physiology, 2005, 289, G116-G128.	1.6	129
32	Mice Lacking T and B Lymphocytes Develop Transient Colitis and Crypt Hyperplasia yet Suffer Impaired Bacterial Clearance during Citrobacter rodentium Infection. Infection and Immunity, 2002, 70, 2070-2081.	1.0	122
33	Citrobacter rodentium infection causes both mitochondrial dysfunction and intestinal epithelial barrier disruption in vivo: role of mitochondrial associated protein (Map). Cellular Microbiology, 2006, 8, 1669-1686.	1.1	118
34	Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cellular Microbiology, 2007, 10, 071003010119001-???.	1.1	116
35	Modulation of Intestinal Goblet Cell Function during Infection by an Attaching and Effacing Bacterial Pathogen. Infection and Immunity, 2008, 76, 796-811.	1.0	116
36	Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia, 2010, 53, 741-748.	2.9	114

#	Article	IF	CITATIONS
37	Antigen-presenting ILC3 regulate T cell–dependent IgA responses to colonic mucosal bacteria. Journal of Experimental Medicine, 2019, 216, 728-742.	4.2	113
38	Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome. Immunology, 2018, 155, 36-52.	2.0	112
39	A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection. PLoS Pathogens, 2014, 10, e1004264.	2.1	107
40	Salmonella Pathogenicity Island 2 Is Expressed Prior to Penetrating the Intestine. PLoS Pathogens, 2005, 1, e32.	2.1	105
41	SopD2 is a Novel Type III Secreted Effector of Salmonella typhimurium That Targets Late Endocytic Compartments Upon Delivery Into Host Cells. Traffic, 2003, 4, 36-48.	1.3	104
42	Myenteric plexus injury and apoptosis in experimental colitis. Autonomic Neuroscience: Basic and Clinical, 2005, 117, 41-53.	1.4	94
43	NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death and Differentiation, 2016, 23, 1331-1346.	5.0	94
44	Novel Fecal Biomarkers That Precede Clinical Diagnosis of Ulcerative Colitis. Gastroenterology, 2021, 160, 1532-1545.	0.6	94
45	<i>Salmonella</i> Infection of Gallbladder Epithelial Cells Drives Local Inflammation and Injury in a Model of Acute Typhoid Fever. Journal of Infectious Diseases, 2009, 200, 1703-1713.	1.9	91
46	Modulation of Inducible Nitric Oxide Synthase Expression by the Attaching and Effacing Bacterial Pathogen Citrobacter rodentium in Infected Mice. Infection and Immunity, 2002, 70, 6424-6435.	1.0	89
47	Nonlinear partial differential equations and applications: Host-pathogen interactions: Host resistance factor Nramp1 up-regulates the expression of Salmonella pathogenicity island-2 virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15705-15710	3.3	87
48	Attaching and Effacing Bacterial Effector NleC Suppresses Epithelial Inflammatory Responses by Inhibiting NF-1ºB and p38 Mitogen-Activated Protein Kinase Activation. Infection and Immunity, 2011, 79, 3552-3562.	1.0	85
49	Skin Exposure to Narrow Band Ultraviolet (UVB) Light Modulates the Human Intestinal Microbiome. Frontiers in Microbiology, 2019, 10, 2410.	1.5	84
50	SseK1 and SseK2 Are Novel Translocated Proteins of Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2004, 72, 5115-5125.	1.0	83
51	The goblet cell-derived mediator RELM-Î ² drives spontaneous colitis in Muc2-deficient mice by promoting commensal microbial dysbiosis. Mucosal Immunology, 2016, 9, 1218-1233.	2.7	81
52	Suppressive and Gut-Reparative Functions of Human Type 1 T Regulatory Cells. Gastroenterology, 2019, 157, 1584-1598.	0.6	81
53	SIGIRR, a Negative Regulator of TLR/IL-1R Signalling Promotes Microbiota Dependent Resistance to Colonization by Enteric Bacterial Pathogens. PLoS Pathogens, 2013, 9, e1003539.	2.1	77
54	Goblet Cell Derived RELM-β Recruits CD4+ T Cells during Infectious Colitis to Promote Protective Intestinal Epithelial Cell Proliferation. PLoS Pathogens, 2015, 11, e1005108.	2.1	77

#	Article	IF	CITATIONS
55	Critical Role for Signal Transducer and Activator of Transcription Factor 6 in Mediating Intestinal Muscle Hypercontractility and Worm Expulsion in Trichinella spiralis-Infected Mice. Infection and Immunity, 2001, 69, 838-844.	1.0	75
56	Active vitamin D (1,25-dihydroxyvitamin D ₃) increases host susceptibility to <i>Citrobacter rodentium</i> by suppressing mucosal Th17 responses. American Journal of Physiology - Renal Physiology, 2012, 303, G1299-G1311.	1.6	75
57	Bacterial Stimulation of the TLR-MyD88 Pathway Modulates the Homeostatic Expression of Ileal Paneth Cell α-Defensins. Journal of Innate Immunity, 2013, 5, 39-49.	1.8	75
58	Flagellin-Dependent and -Independent Inflammatory Responses following Infection by Enteropathogenic <i>Escherichia coli</i> and <i>Citrobacter rodentium</i> . Infection and Immunity, 2008, 76, 1410-1422.	1.0	68
59	Nramp1 drives an accelerated inflammatory response during <i>Salmonella</i> -induced colitis in mice. Cellular Microbiology, 2009, 11, 351-362.	1.1	68
60	Inflammation-induced impairment of enteric nerve function in nematode-infected mice is macrophage dependent. American Journal of Physiology - Renal Physiology, 2000, 278, G259-G265.	1.6	67
61	Aggregation via the Red, Dry, and Rough Morphotype Is Not a Virulence Adaptation in <i>Salmonella enterica</i> Serovar Typhimurium. Infection and Immunity, 2008, 76, 1048-1058.	1.0	67
62	Modulation of Host Cytoskeleton Function by the Enteropathogenic Escherichia coli and Citrobacter rodentium Effector Protein EspG. Infection and Immunity, 2005, 73, 2586-2594.	1.0	65
63	Enteropathogenic Escherichia coli Infection Induces Expression of the Early Growth Response Factor by Activating Mitogen-Activated Protein Kinase Cascades in Epithelial Cells. Infection and Immunity, 2001, 69, 6217-6224.	1.0	62
64	Cloning Vectors and Fluorescent Proteins Can Significantly Inhibit Salmonella enterica Virulence in Both Epithelial Cells and Macrophages: Implications for Bacterial Pathogenesis Studies. Infection and Immunity, 2005, 73, 7027-7031.	1.0	62
65	Interleukin-11 Reduces TLR4-Induced Colitis in TLR2-Deficient Mice and Restores Intestinal STAT3 Signaling. Gastroenterology, 2010, 139, 1277-1288.	0.6	62
66	Relative contributions of NOS isoforms during experimental colitis: endothelial-derived NOS maintains mucosal integrity. American Journal of Physiology - Renal Physiology, 2004, 287, G865-G874.	1.6	61
67	Intestinal restriction of SalmonellaÂTyphimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes. PLoS Pathogens, 2020, 16, e1008498.	2.1	60
68	Intestinal Epithelium-Specific MyD88 Signaling Impacts Host Susceptibility to Infectious Colitis by Promoting Protective Goblet Cell and Antimicrobial Responses. Infection and Immunity, 2014, 82, 3753-3763.	1.0	59
69	Enteropathogenic and Enterohemorrhagic <i>Escherichia coli</i> Infections: Emerging Themes in Pathogenesis and Prevention. Canadian Journal of Gastroenterology & Hepatology, 2002, 16, 771-778.	1.8	58
70	The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cellular Microbiology, 2010, 12, 1322-1339.	1.1	58
71	Metalloprotease NIeC Suppresses Host NF-κB/Inflammatory Responses by Cleaving p65 and Interfering with the p65/RPS3 Interaction. PLoS Pathogens, 2015, 11, e1004705.	2.1	55
72	Loss of Single Immunoglobulin Interlukin-1 Receptor-Related Molecule Leads to Enhanced Colonic Polyposis in Apcmin Mice. Gastroenterology, 2010, 139, 574-585.	0.6	54

#	Article	IF	CITATIONS
73	DNBS/TNBS Colitis Models: Providing Insights Into Inflammatory Bowel Disease and Effects of Dietary Fat. Journal of Visualized Experiments, 2014, , e51297.	0.2	54
74	Giardia co-infection promotes the secretion of antimicrobial peptides beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing bacteria-induced intestinal disease. PLoS ONE, 2017, 12, e0178647.	1.1	54
75	Interleukin-5 deficient mice exhibit impaired host defence against challenge Trichinella spiralis infections. Parasite Immunology, 2000, 22, 487-492.	0.7	53
76	T cell–mediated exocrine pancreatic damage in major histocompatibility complex class Il–deficient mice. Gastroenterology, 1998, 115, 978-987.	0.6	52
77	A Novel Secretion Pathway of Salmonella enterica Acts as an Antivirulence Modulator during Salmonellosis. PLoS Pathogens, 2008, 4, e1000036.	2.1	52
78	Role of M-CSF-dependent macrophages in colitis is driven by the nature of the inflammatory stimulus. American Journal of Physiology - Renal Physiology, 2008, 294, G770-G777.	1.6	50
79	Expression of the Blood-Group-Related Gene B4galnt2 Alters Susceptibility to Salmonella Infection. PLoS Pathogens, 2015, 11, e1005008.	2.1	50
80	Putative inflammatory and immunological mechanisms in functional bowel disorders. Bailliere's Best Practice and Research in Clinical Gastroenterology, 1999, 13, 429-436.	1.0	49
81	Frontline defenders: goblet cell mediators dictate host-microbe interactions in the intestinal tract during health and disease. American Journal of Physiology - Renal Physiology, 2018, 314, G360-G377.	1.6	49
82	IL-22 Preserves Gut Epithelial Integrity and Promotes Disease Remission during Chronic <i>Salmonella</i> Infection. Journal of Immunology, 2019, 202, 956-965.	0.4	49
83	Resistin-like Molecule α Promotes Pathogenic Th17 Cell Responses and Bacterial-Induced Intestinal Inflammation. Journal of Immunology, 2013, 190, 2292-2300.	0.4	48
84	The Citrobacter rodentium Mouse Model: Studying Pathogen and Host Contributions to Infectious Colitis. Journal of Visualized Experiments, 2013, , e50222.	0.2	46
85	CD4 T Cells and Major Histocompatibility Complex Class II Expression Influence Worm Expulsion and Increased Intestinal Muscle Contraction during <i>Trichinella spiralis</i> Infection. Infection and Immunity, 1999, 67, 6090-6097.	1.0	45
86	CD4 ⁺ T Cells Drive Goblet Cell Depletion during Citrobacter rodentium Infection. Infection and Immunity, 2013, 81, 4649-4658.	1.0	44
87	Vasoactive Intestinal Polypeptide Promotes Intestinal Barrier Homeostasis and Protection Against Colitis in Mice. PLoS ONE, 2015, 10, e0125225.	1.1	43
88	Long-Term Effects of Early-Life Antibiotic Exposure on Resistance to Subsequent Bacterial Infection. MBio, 2019, 10, .	1.8	43
89	Interleukin-1 (IL-1) Signaling in Intestinal Stromal Cells Controls KC/CXCL1 Secretion, Which Correlates with Recruitment of IL-22-Secreting Neutrophils at Early Stages of Citrobacter rodentium Infection. Infection and Immunity, 2015, 83, 3257-3267.	1.0	41
90	TACI deficiency enhances antibody avidity and clearance of an intestinal pathogen. Journal of Clinical Investigation, 2014, 124, 4857-4866.	3.9	40

#	Article	IF	CITATIONS
91	Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host and Microbe, 2021, 29, 1744-1756.e5.	5.1	40
92	Nramp1 expression by dendritic cells modulates inflammatory responses during <i>Salmonella</i> Typhimurium infection. Cellular Microbiology, 2008, 10, 1646-1661.	1.1	38
93	Innate host responses to enteric bacterial pathogens: a balancing act between resistance and tolerance. Cellular Microbiology, 2012, 14, 475-484.	1.1	38
94	Epithelial Histone Deacetylase 3 Instructs Intestinal Immunity by Coordinating Local Lymphocyte Activation. Cell Reports, 2017, 19, 1165-1175.	2.9	38
95	Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to <i>Citrobacter rodentium</i> -induced colitis. American Journal of Physiology - Renal Physiology, 2015, 309, G730-G742.	1.6	36
96	The Helical Shape of Campylobacter jejuni Promotes In Vivo Pathogenesis by Aiding Transit through Intestinal Mucus and Colonization of Crypts. Infection and Immunity, 2016, 84, 3399-3407.	1.0	35
97	A simple, cost-effective method for generating murine colonic 3D enteroids and 2D monolayers for studies of primary epithelial cell function. American Journal of Physiology - Renal Physiology, 2017, 313, G467-G475.	1.6	34
98	SseA is required for translocation of Salmonella pathogenicity island-2 effectors into host cells. Microbes and Infection, 2003, 5, 561-570.	1.0	33
99	Macrophage β2-Integrins Regulate IL-22 by ILC3s and Protect from Lethal Citrobacter rodentium-Induced Colitis. Cell Reports, 2019, 26, 1614-1626.e5.	2.9	33
100	Noradrenergic and cholinergic neural pathways mediate stress-induced reactivation of colitis in the rat. Autonomic Neuroscience: Basic and Clinical, 2006, 124, 56-68.	1.4	31
101	Insights into <i>Campylobacter jejuni</i> colonization of the mammalian intestinal tract using a novel mouse model of infection. Gut Microbes, 2015, 6, 143-148.	4.3	31
102	Active Transport of Phosphorylated Carbohydrates Promotes Intestinal Colonization and Transmission of a Bacterial Pathogen. PLoS Pathogens, 2015, 11, e1005107.	2.1	30
103	Enteroids Derived From Inflammatory Bowel Disease Patients Display Dysregulated Endoplasmic Reticulum Stress Pathways, Leading to Differential Inflammatory Responses and Dendritic Cell Maturation. Journal of Crohn's and Colitis, 2020, 14, 948-961.	0.6	30
104	Vasoactive intestinal peptide promotes host defense against enteric pathogens by modulating the recruitment of group 3 innate lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
105	IL-5 contributes to worm expulsion and muscle hypercontractility in a primaryT. spiralisinfection. American Journal of Physiology - Renal Physiology, 1999, 277, G400-G408.	1.6	29
106	Salmonella enterica Infection of Murine and Human Enteroid-Derived Monolayers Elicits Differential Activation of Epithelium-Intrinsic Inflammasomes. Infection and Immunity, 2020, 88, .	1.0	29
107	IL-12 gene transfer alters gut physiology and host immunity in nematode-infected mice. American Journal of Physiology - Renal Physiology, 2001, 281, G102-G110.	1.6	28
108	Bacterial AB5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nature Communications, 2019, 10, 1390.	5.8	28

#	Article	IF	CITATIONS
109	Salmonella and the Inflammasome: Battle for Intracellular Dominance. Current Topics in Microbiology and Immunology, 2016, 397, 43-67.	0.7	27
110	The Single IgG IL-1–Related Receptor Controls TLR Responses in Differentiated Human Intestinal Epithelial Cells. Journal of Immunology, 2010, 184, 2305-2313.	0.4	26
111	The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host. Infection and Immunity, 2015, 83, 2636-2650.	1.0	26
112	Ulcerative Colitis-associated <i>E. coli</i> pathobionts potentiate colitis in susceptible hosts. Gut Microbes, 2020, 12, 1847976.	4.3	26
113	Creating a More Perfect Union: Modeling Intestinal Bacteria-Epithelial Interactions Using Organoids. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 769-782.	2.3	26
114	T lymphocyte-dependent and -independent intestinal smooth muscle dysfunction in the <i>T</i> . <i>spiralis</i> -infected mouse. American Journal of Physiology - Renal Physiology, 1998, 275, G1157-G1165.	1.6	25
115	Dynamic Interactions of a Conserved Enterotoxigenic Escherichia coli Adhesin with Intestinal Mucins Govern Epithelium Engagement and Toxin Delivery. Infection and Immunity, 2016, 84, 3608-3617.	1.0	25
116	EspF is crucial for Citrobacter rodentium-induced tight junction disruption and lethality in immunocompromised animals. PLoS Pathogens, 2019, 15, e1007898.	2.1	25
117	The L-Arginine Transporter Solute Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and Effacing Bacteria. PLoS Pathogens, 2016, 12, e1005984.	2.1	24
118	Genetic ablation of <i>Cyp8b1</i> preserves host metabolic function by repressing steatohepatitis and altering gut microbiota composition. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E418-E432.	1.8	22
119	Immune Stimulation Using a Gut Microbe-Based Immunotherapy Reduces Disease Pathology and Improves Barrier Function in Ulcerative Colitis. Frontiers in Immunology, 2018, 9, 2211.	2.2	22
120	Giardia spp. promote the production of antimicrobial peptides and attenuate disease severity induced by attaching and effacing enteropathogens via the induction of the NLRP3 inflammasome. International Journal for Parasitology, 2020, 50, 263-275.	1.3	22
121	Current progress in enteropathogenic and enterohemorrhagic Escherichia coli vaccines. Expert Review of Vaccines, 2002, 1, 483-493.	2.0	21
122	Genetic profiling of dendritic cells exposed to live- or ultraviolet-irradiated Chlamydia muridarum reveals marked differences in CXC chemokine profiles. Immunology, 2007, 120, 160-172.	2.0	21
123	Noncanonical inflammasomes: Antimicrobial defense that does not play by the rules. Cellular Microbiology, 2017, 19, e12730.	1.1	20
124	Isolation and Characterization of Potentially Probiotic Bacterial Strains from Mice: Proof of Concept for Personalized Probiotics. Nutrients, 2018, 10, 1684.	1.7	20
125	Microbiota Inhibit Epithelial Pathogen Adherence by Epigenetically Regulating C-Type Lectin Expression. Frontiers in Immunology, 2019, 10, 928.	2.2	20
126	Epithelial p38α Controls Immune Cell Recruitment in the Colonic Mucosa. PLoS Pathogens, 2010, 6, e1000934.	2.1	19

#	Article	IF	CITATIONS
127	MyD88 signaling promotes both mucosal homeostatic and fibrotic responses during Salmonella-induced colitis. American Journal of Physiology - Renal Physiology, 2012, 303, G311-G323.	1.6	19
128	Pediatric Eosinophilic Esophagitis Is Associated With Increased Lamina Propria Immunoglobulin G4â€Positive Plasma Cells. Journal of Pediatric Gastroenterology and Nutrition, 2018, 67, 204-209.	0.9	19
129	The Muc2 mucin coats murine Paneth cell granules and facilitates their content release and dispersion. American Journal of Physiology - Renal Physiology, 2018, 315, G195-G205.	1.6	19
130	Mast cell-independent impairment of host defense and muscle contraction inT. spiralis-infected W/WVmice. American Journal of Physiology - Renal Physiology, 2001, 280, G640-G648.	1.6	18
131	Neural change in <i>Trichinella</i> -infected mice is MHC II independent and involves M-CSF-derived macrophages. American Journal of Physiology - Renal Physiology, 2001, 281, G151-G158.	1.6	17
132	Tricellular Tight Junction Protein Tricellulin Is Targeted by the Enteropathogenic Escherichia coli Effector EspG1, Leading to Epithelial Barrier Disruption. Infection and Immunity, 2017, 85, .	1.0	17
133	A Novel Mouse Model of Enteric Vibrio parahaemolyticus Infection Reveals that the Type III Secretion System 2 Effector VopC Plays a Key Role in Tissue Invasion and Gastroenteritis. MBio, 2019, 10, .	1.8	17
134	Prebiotic Enriched Exclusive Enteral Nutrition Suppresses Colitis via Gut Microbiome Modulation and Expansion of Anti-inflammatory T Cells in a Mouse Model of Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1251-1266.	2.3	16
135	Interleukin-37 regulates innate immune signaling in human and mouse colonic organoids. Scientific Reports, 2021, 11, 8206.	1.6	15
136	A nonredundant role for TÂcell-derived interleukin 22 in antibacterial defense of colonic crypts. Immunity, 2022, 55, 494-511.e11.	6.6	15
137	Irgm1-deficiency leads to myeloid dysfunction in colon lamina propria and susceptibility to the intestinal pathogen Citrobacter rodentium. PLoS Pathogens, 2020, 16, e1008553.	2.1	14
138	Fasting increases microbiome-based colonization resistance and reduces host inflammatory responses during an enteric bacterial infection. PLoS Pathogens, 2021, 17, e1009719.	2.1	14
139	Mouse Models for Campylobacter jejuni Colonization and Infection. Methods in Molecular Biology, 2017, 1512, 171-188.	0.4	13
140	Intestinal-epithelial LSD1 controls goblet cell maturation and effector responses required for gut immunity to bacterial and helminth infection. PLoS Pathogens, 2021, 17, e1009476.	2.1	13
141	Absence of stearoyl-CoA desaturase-1 does not promote DSS-induced acute colitis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 1166-1172.	1.2	12
142	Requirement of epithelial integrin-linked kinase for facilitation of Citrobacter rodentium-induced colitis. BMC Gastroenterology, 2013, 13, 137.	0.8	12
143	IL-4 gene transfer to the small bowel serosa leads to intestinal inflammation and smooth muscle hyperresponsiveness. American Journal of Physiology - Renal Physiology, 2007, 292, G385-G394.	1.6	11
144	SLAM–SAP Signaling Promotes Differentiation of IL-17–Producing T Cells and Progression of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2014, 193, 5841-5853.	0.4	11

#	Article	IF	CITATIONS
145	Associations of NOD2 polymorphisms with Erysipelotrichaceae in stool of in healthy first degree relatives of Crohn's disease subjects. BMC Medical Genetics, 2020, 21, 204.	2.1	11
146	Autotaxin stimulates LPA2 receptor in macrophages and exacerbates dextran sulfate sodium-induced acute colitis. Journal of Molecular Medicine, 2020, 98, 1781-1794.	1.7	11
147	Direct Clinical Evidence Recommending the Use of Proteinase K or Dithiothreitol to Pretreat Sputum for Detection of SARS-CoV-2. Frontiers in Medicine, 2020, 7, 549860.	1.2	10
148	What's for dinner? How Citrobacter rodentium's metabolism helps it thrive in the competitive gut. Current Opinion in Microbiology, 2021, 63, 76-82.	2.3	10
149	Activation of p38α in T Cells Regulates the Intestinal Host Defense against Attaching and Effacing Bacterial Infections. Journal of Immunology, 2013, 191, 2764-2770.	0.4	9
150	Indispensable functions of ABL and PDGF receptor kinases in epithelial adherence of attaching/effacing pathogens under physiological conditions. American Journal of Physiology - Cell Physiology, 2014, 307, C180-C189.	2.1	8
151	TLR9 limits enteric antimicrobial responses and promotes microbiotaâ€based colonisation resistance during <i>Citrobacter rodentium</i> infection. Cellular Microbiology, 2019, 21, e13026.	1.1	8
152	First-reported pediatric cases of American ginseng anaphylaxis and allergy. Allergy, Asthma and Clinical Immunology, 2018, 14, 79.	0.9	7
153	Application of the Eosinophilic Esophagitis Histology Scoring System Grade Scores in Patients at British Columbia Children's Hospital. Fetal and Pediatric Pathology, 2022, 41, 962-976.	0.4	7
154	Microbial Respiration in the Colon: Using H2O2 to Catch Your Breath. Cell Host and Microbe, 2020, 28, 771-773.	5.1	6
155	Harnessing Big Data to Optimize an Algorithm for Rapid Diagnosis of Pulmonary Tuberculosis in a Real-World Setting. Frontiers in Cellular and Infection Microbiology, 2021, 11, 650163.	1.8	6
156	Intestinal microbiota are transiently altered duringSalmonella-induced gastroenteritis. Expert Review of Gastroenterology and Hepatology, 2008, 2, 525-529.	1.4	5
157	<i>Citrobacter rodentium</i> Infection Induces MyD88-Dependent Formation of Ubiquitinated Protein Aggregates in the Intestinal Epithelium. Journal of Innate Immunity, 2011, 3, 83-98.	1.8	4
158	mTOR is critical for intestinal T-cell homeostasis and resistance to Citrobacter rodentium. Scientific Reports, 2016, 6, 34939.	1.6	4
159	Investigation of Host and Pathogen Contributions to Infectious Colitis Using the Citrobacter rodentium Mouse Model of Infection. Methods in Molecular Biology, 2016, 1422, 225-241.	0.4	4
160	lκBζ facilitates protective immunity against Salmonella infection via Th1 differentiation and IgG production. Scientific Reports, 2019, 9, 8397.	1.6	4
161	Cutting Edge: Intestinal Mucus Limits the Clonal Deletion of Developing T Cells Specific for an Oral Antigen. Journal of Immunology, 2020, 205, 329-334.	0.4	3
162	Modeling enteropathogenic and enterohemorrhagic E. coli infections and disease. Drug Discovery Today: Disease Models, 2004, 1, 73-79.	1.2	2

#	Article	IF	CITATIONS
163	Innate Immunity and Microbes: Conversations with the Gut Leading to Intestinal Tissue Repair and Fibrosis. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2009, 8, 228-247.	1.1	2
164	Poor Correlation of Oral Swabs with Esophageal Eosinophil Counts. Dysphagia, 2020, 35, 773-779.	1.0	1
165	How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic Escherichia Coli. , 0, , 423-437.		1