List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7824874/publications.pdf Version: 2024-02-01

FAVILAN WANC

#	Article	IF	CITATIONS
1	Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of Hazardous Materials, 2010, 177, 300-306.	6.5	381
2	Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere, 2020, 254, 126791.	4.2	341
3	Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials, 2022, 424, 127531.	6.5	294
4	Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 2018, 194, 495-503.	4.2	252
5	Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research, 2015, 22, 2837-2845.	2.7	234
6	Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. Journal of Hazardous Materials, 2022, 424, 127364.	6.5	208
7	Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants – A soil microcosm experiment. Chemosphere, 2016, 147, 88-97.	4.2	199
8	Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 2020, 388, 121775.	6.5	193
9	Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 2019, 235, 1073-1080.	4.2	191
10	Uptake and translocation of nano/microplastics by rice seedlings: Evidence from a hydroponic experiment. Journal of Hazardous Materials, 2022, 421, 126700.	6.5	165
11	Effects of microplastics on plant growth and arbuscular mycorrhizal fungal communities in a soil spiked with ZnO nanoparticles. Soil Biology and Biochemistry, 2021, 155, 108179.	4.2	144
12	Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration: Mechanisms and applications. Critical Reviews in Environmental Science and Technology, 2017, 47, 1901-1957.	6.6	133
13	Effects of Co-Contamination of Microplastics and Cd on Plant Growth and Cd Accumulation. Toxics, 2020, 8, 36.	1.6	125
14	Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. Journal of Hazardous Materials, 2010, 176, 715-720.	6.5	116
15	Micro(nano)plastics and terrestrial plants: Up-to-date knowledge on uptake, translocation, and phytotoxicity. Resources, Conservation and Recycling, 2022, 185, 106503.	5.3	109
16	Interactions between microplastics and soil fauna: A critical review. Critical Reviews in Environmental Science and Technology, 2022, 52, 3211-3243.	6.6	105
17	Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant and Soil, 2005, 269, 225-232.	1.8	104
18	Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza, 2004, 14, 133-137.	1.3	102

#	Article	IF	CITATIONS
19	Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions. Applied Soil Ecology, 2006, 31, 110-119.	2.1	96
20	Heavy Metal Accumulation in Different Rice Cultivars as Influenced by Foliar Application of Nano-silicon. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	86
21	Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens – a field case. Environmental Pollution, 2007, 147, 248-255.	3.7	83
22	Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	81
23	Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. Journal of Hazardous Materials, 2022, 433, 128826.	6.5	79
24	Inoculation with arbuscular mycorrhizal fungus Acaulospora mellea decreases Cu phytoextraction by maize from Cu-contaminated soil. Pedobiologia, 2007, 51, 99-109.	0.5	66
25	Effect of Arbuscular Mycorrhizal Fungal Inoculation on Heavy Metal Accumulation of Maize Grown in a Naturally Contaminated Soil. International Journal of Phytoremediation, 2007, 9, 345-353.	1.7	64
26	Effect of eco-remediation using planted floating bed system on nutrients and heavy metals in urban river water and sediment: A field study in China. Science of the Total Environment, 2014, 485-486, 596-603.	3.9	59
27	Effects of AM Inoculation and Organic Amendment, Alone or in Combination, on Growth, P Nutrition, and Heavy-Metal Uptake of Tobacco in Pb-Cd-Contaminated Soil. Journal of Plant Growth Regulation, 2012, 31, 549-559.	2.8	56
28	Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 2003, 13, 123-127.	1.3	55
29	An improved preparation of graphene supported ultrafine ruthenium (0) NPs: Very active and durable catalysts for H2 generation from methanolysis of ammonia borane. International Journal of Hydrogen Energy, 2015, 40, 10856-10866.	3.8	52
30	Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus. Chemosphere, 2018, 209, 421-429.	4.2	51
31	Evaluating phytotoxicity of bare and starch-stabilized zero-valent iron nanoparticles in mung bean. Chemosphere, 2019, 236, 124336.	4.2	46
32	Effects of Soil Amendments on Heavy Metal Immobilization and Accumulation by Maize Grown in a Multiple-Metal-Contaminated Soil and Their Potential for Safe Crop Production. Toxics, 2020, 8, 102.	1.6	45
33	A highly efficient heterogeneous catalyst of Ru/MMT: Preparation, characterization, and evaluation of catalytic effect. Applied Catalysis B: Environmental, 2013, 140-141, 115-124.	10.8	42
34	Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus. Environmental Science and Pollution Research, 2018, 25, 23736-23747.	2.7	41
35	Adsorption of 2,4-dichlorophenol from Aqueous Solution by a New Low-Cost Adsorbent – Activated Bamboo Charcoal. Separation Science and Technology, 2010, 45, 2329-2336.	1.3	40
36	Inoculations with Arbuscular Mycorrhizal Fungi Increase Vegetable Yields and Decrease Phoxim Concentrations in Carrot and Green Onion and Their Soils. PLoS ONE, 2011, 6, e16949.	1.1	40

#	Article	IF	CITATIONS
37	H2O2 Is Involved in the Metallothionein-Mediated Rice Tolerance to Copper and Cadmium Toxicity. International Journal of Molecular Sciences, 2017, 18, 2083.	1.8	40
38	Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Environmental Sciences: Processes and Impacts, 2013, 15, 794.	1.7	37
39	Arbuscular Mycorrhiza Enhances Biomass Production and Salt Tolerance of Sweet Sorghum. Microorganisms, 2019, 7, 289.	1.6	37
40	Ecotoxicological effects of polyethylene microplastics and ZnO nanoparticles on earthworm Eisenia fetida. Applied Soil Ecology, 2022, 176, 104469.	2.1	37
41	Arbuscular mycorrhizal fungal community structure and diversity in response to long-term fertilization: a field case from China. World Journal of Microbiology and Biotechnology, 2011, 27, 67-74.	1.7	36
42	Benefits of arbuscular mycorrhizal fungi in reducing organic contaminant residues in crops: Implications for cleaner agricultural production. Critical Reviews in Environmental Science and Technology, 2020, 50, 1580-1612.	6.6	36
43	Removal of Chromium from a Contaminated Soil Using Oxalic Acid, Citric Acid, and Hydrochloric Acid: Dynamics, Mechanisms, and Concomitant Removal of Non-Targeted Metals. International Journal of Environmental Research and Public Health, 2019, 16, 2771.	1.2	35
44	Remediation of Cr(VI)-Contaminated Soil by Nano-Zero-Valent Iron in Combination with Biochar or Humic Acid and the Consequences for Plant Performance. Toxics, 2020, 8, 26.	1.6	33
45	Diversity and distribution of arbuscular mycorrhizal fungi along altitudinal gradients in Mount Taibai of the Qinling Mountains. Canadian Journal of Microbiology, 2014, 60, 811-818.	0.8	30
46	The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology, 2020, 43, 100877.	0.7	30
47	Arbuscular Mycorrhizal Fungi Improve the Performance of Sweet Sorghum Grown in a Mo-Contaminated Soil. Journal of Fungi (Basel, Switzerland), 2020, 6, 44.	1.5	29
48	Contribution of Nano-Zero-Valent Iron and Arbuscular Mycorrhizal Fungi to Phytoremediation of Heavy Metal-Contaminated Soil. Nanomaterials, 2021, 11, 1264.	1.9	27
49	Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles. International Journal of Environmental Research and Public Health, 2018, 15, 2162.	1.2	23
50	Contribution of arbuscular mycorrhizal fungi and soil amendments to remediation of a heavy metal-contaminated soil using sweet sorghum. Pedosphere, 2022, 32, 844-855.	2.1	22
51	Phytotoxicity of iron-based materials in mung bean: Seed germination tests. Chemosphere, 2020, 251, 126432.	4.2	18
52	Arbuscular mycorrhizal inoculation increases molybdenum accumulation but decreases molybdenum toxicity in maize plants grown in polluted soil. RSC Advances, 2018, 8, 37069-37076.	1.7	17
53	Phosphorus fertilization and mycorrhizal colonization change silver nanoparticle impacts on maize. Ecotoxicology, 2021, 30, 118-129.	1.1	17
54	Photocatalytic strategy to mitigate microplastic pollution in aquatic environments: Promising catalysts, efficiencies, mechanisms, and ecological risks. Critical Reviews in Environmental Science and Technology, 2023, 53, 504-526.	6.6	16

#	Article	IF	CITATIONS
55	Arbuscular mycorrhizal fungi associated with tree peony in 3 geographic locations in China. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2013, 37, 726-733.	0.8	14
56	Dynamics of phoxim residues in green onion and soil as influenced by arbuscular mycorrhizal fungi. Journal of Hazardous Materials, 2011, 185, 112-116.	6.5	13
57	EXPLOITATION OF PHOSPHORUS PATCHES WITH DIFFERENT PHOSPHORUS ENRICHMENT BY THREE ARBUSCULAR MYCORRHIZAL FUNGI. Journal of Plant Nutrition, 2011, 34, 1096-1106.	0.9	12
58	Alterations of Arbuscular Mycorrhizal Fungal Diversity in Soil with Elevation in Tropical Forests of China. Diversity, 2019, 11, 181.	0.7	12
59	Foliar stoichiometry under different mycorrhizal types in relation to temperature and precipitation in grassland. Journal of Plant Ecology, 2013, 6, 270-276.	1.2	9
60	Mycorrhizal relationship in lupines: a review. Legume Research, 2017, 40, .	0.0	7
61	Quinone profiles of microbial communities in sediments of Haihe River–Bohai Bay as influenced by heavy metals and environmental factors. Environmental Monitoring and Assessment, 2011, 176, 157-167.	1.3	6
62	Arbuscular Mycorrhizal Fungi Enhance Plant Diversity, Density and Productivity of Spring Ephemeral Community in Desert Ecosystem. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45, 301-307.	0.5	6
63	Hexavalent chromium removal by a resistant strain <i>Bacillus cereus</i> ZY-2009. Environmental Technology (United Kingdom), 2023, 44, 1926-1935.	1.2	6
64	Arbuscular Mycorrhizas and Ecosystem Restoration. , 2017, , 245-292.		4
65	Identification of Cu-binding proteins in embryos of germinating rice in response to Cu toxicity. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	4
66	Influence of mycorrhizal strategy on the foliar traits of the plants on the Tibetan Plateau in response to precipitation and temperature. Turkish Journal of Botany, 0, , .	0.5	4
67	Spatial variation of arbuscular mycorrhizal fungi in two vegetation types in Gurbantonggut Desert. Contemporary Problems of Ecology, 2013, 6, 455-464.	0.3	3
68	Response of Arbuscular Mycorrhizal Fungi to Simulated Climate Changes by Reciprocal Translocation in Tibetan Plateau. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, .	0.5	3
69	Response of soil respiration under different mycorrhizal strategies to precipitation and temperature. Journal of Soil Science and Plant Nutrition, 2012, , 0-0.	1.7	2
70	Glomus caledonium spores can be occupied byGlomus microaggregatum spores. Annals of Microbiology, 2009, 59, 693-697.	1.1	1
71	Forest soil autotrophic and heterotrophic respiration under different mycorrhizal strategies and their responses to temperature and precipitation. Contemporary Problems of Ecology, 2014, 7, 32-38.	0.3	1
72	Response of Arbuscular Mycorrhizal Fungi to Simulated Climate Changes by Reciprocal Translocation in Tibetan Plateau. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2015, 43, 488-493.	0.5	1

#	Article	IF	CITATIONS
73	Effect of ZnO nanoparticles and inoculation with arbuscular mycorrhizal fungus on growth and nutrient uptake of soybean. Acta Ecologica Sinica, 2015, 35, .	0.0	1
74	Activated red mud loaded porcelain sand for the adsorption of As(V) from aqueous system. , 0, 180, 328-335.		1
75	Role of microbial inoculation in phytoremediation of heavy metals by Elsholtzia splendens. , 2011, , .		0
76	Effects of Arbuscular Mycorrhizal Inoculation and Cattle Manure on Cadmium Uptake by Tobacco. , 2012, , .		0
77	Research on the Correlation between Performance and Compensation of Executive and Staff in Agricultural Enterprises. Communications in Computer and Information Science, 2011, , 209-214.	0.4	0
78	Editorial: Microbial Interactions With Nanomaterials in the Environment and Their Application. Frontiers in Microbiology, 2022, 13, 850141.	1.5	0