John H Seinfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7824477/publications.pdf Version: 2024-02-01

		587	1381
436	63,767	125	222
papers	citations	h-index	g-index
511	511	511	16388
all docs	docs citations	times ranked	citing authors

IOHN H SEINEELD

#	Article	IF	CITATIONS
1	The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics, 2009, 9, 5155-5236.	1.9	3,486
2	Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 2005, 5, 1053-1123.	1.9	2,947
3	Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere. Atmospheric Environment, 2008, 42, 3593-3624.	1.9	1,416
4	Gas/Particle Partitioning and Secondary Organic Aerosol Yields. Environmental Science & Technology, 1996, 30, 2580-2585.	4.6	1,383
5	Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 2011, 476, 429-433.	13.7	1,114
6	Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry. Atmospheric Chemistry and Physics, 2010, 10, 4625-4641.	1.9	908
7	Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6640-6645.	3.3	854
8	Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene. Science, 2009, 325, 730-733.	6.0	837
9	Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	801
10	Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons. Journal of Atmospheric Chemistry, 1997, 26, 189-222.	1.4	736
11	Secondary Organic Aerosol Formation from Isoprene Photooxidation. Environmental Science & Technology, 2006, 40, 1869-1877.	4.6	734
12	Secondary organic aerosol formation from <i>m</i> -xylene, toluene, and benzene. Atmospheric Chemistry and Physics, 2007, 7, 3909-3922.	1.9	720
13	Marine aerosol formation from biogenic iodine emissions. Nature, 2002, 417, 632-636.	13.7	705
14	Organic aerosol formation from the oxidation of biogenic hydrocarbons. Journal of Geophysical Research, 1999, 104, 3555-3567.	3.3	666
15	Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research, 2002, 107, AAC 14-1.	3.3	665
16	Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene. Journal of Physical Chemistry A, 2006, 110, 9665-9690.	1.1	611
17	Organosulfate Formation in Biogenic Secondary Organic Aerosol. Journal of Physical Chemistry A, 2008, 112, 8345-8378.	1.1	594
18	Evidence for Organosulfates in Secondary Organic Aerosol. Environmental Science & Technology, 2007, 41, 517-527.	4.6	591

#	Article	IF	CITATIONS
19	A large organic aerosol source in the free troposphere missing from current models. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	576
20	Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 2020, 369, 702-706.	6.0	563
21	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
22	ORGANIC ATMOSPHERIC PARTICULATE MATERIAL. Annual Review of Physical Chemistry, 2003, 54, 121-140.	4.8	536
23	Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research, 1995, 100, 18755.	3.3	533
24	Ion-induced nucleation of pure biogenic particles. Nature, 2016, 533, 521-526.	13.7	528
25	The Atmospheric Aerosol-Forming Potential of Whole Gasoline Vapor. Science, 1997, 276, 96-99.	6.0	516
26	Gas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products. Journal of Atmospheric Chemistry, 1999, 34, 207-258.	1.4	495
27	Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 2011, 11, 6465-6474.	1.9	493
28	Improving our fundamental understanding of the role of aerosolâ^'cloud interactions in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5781-5790.	3.3	479
29	Effect of Acidity on Secondary Organic Aerosol Formation from Isoprene. Environmental Science & Technology, 2007, 41, 5363-5369.	4.6	457
30	Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science, 2014, 344, 717-721.	6.0	456
31	Isoprene photooxidation: new insights into the production of acids and organic nitrates. Atmospheric Chemistry and Physics, 2009, 9, 1479-1501.	1.9	450
32	Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6670-6675.	3.3	437
33	Effect of NO _x level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmospheric Chemistry and Physics, 2007, 7, 5159-5174.	1.9	423
34	Global secondary organic aerosol from isoprene oxidation. Geophysical Research Letters, 2006, 33, .	1.5	402
35	Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5802-5807.	3.3	401
36	Secondary Organic Aerosol from the Photooxidation of Aromatic Hydrocarbons:Â Molecular Composition. Environmental Science & Technology, 1997, 31, 1345-1358.	4.6	383

#	Article	IF	CITATIONS
37	Sensitivity analysis of a chemical mechanism for aqueousâ€phase atmospheric chemistry. Journal of Geophysical Research, 1989, 94, 1105-1126.	3.3	374
38	Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways. Atmospheric Chemistry and Physics, 2008, 8, 2405-2420.	1.9	366
39	Particle Phase Acidity and Oligomer Formation in Secondary Organic Aerosol. Environmental Science & Technology, 2004, 38, 6582-6589.	4.6	359
40	Aromatics, Reformulated Gasoline, and Atmospheric Organic Aerosol Formation. Environmental Science & Scien	4.6	348
41	Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons. Environmental Science & amp; Technology, 2006, 40, 2283-2297.	4.6	341
42	Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chemical Reviews, 2018, 118, 3337-3390.	23.0	339
43	Predicting global aerosol size distributions in general circulation models. Journal of Geophysical Research, 2002, 107, AAC 4-1.	3.3	335
44	Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. Journal of Geophysical Research, 2008, 113, .	3.3	335
45	Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model. Aerosol Science and Technology, 1993, 19, 157-181.	1.5	334
46	Gas-phase products and secondary aerosol yields from the photooxidation of 16 different terpenes. Journal of Geophysical Research, 2006, 111, .	3.3	332
47	Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophysical Research Letters, 1999, 26, 2721-2724.	1.5	325
48	Effect of changes in climate and emissions on future sulfateâ€nitrateâ€ammonium aerosol levels in the United States. Journal of Geophysical Research, 2009, 114, .	3.3	319
49	Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO ₃). Atmospheric Chemistry and Physics, 2008, 8, 4117-4140.	1.9	317
50	New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmospheric Chemistry and Physics, 2011, 11, 9155-9206.	1.9	317
51	Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds. Journal of Geophysical Research, 2005, 110, .	3.3	316
52	Low-Molecular-Weight and Oligomeric Components in Secondary Organic Aerosol from the Ozonolysis of Cycloalkenes and α-Pinene. Journal of Physical Chemistry A, 2004, 108, 10147-10164.	1.1	308
53	Measurements of Secondary Organic Aerosol from Oxidation of Cycloalkenes, Terpenes, andm-Xylene Using an Aerodyne Aerosol Mass Spectrometer. Environmental Science & Technology, 2005, 39, 5674-5688.	4.6	307
54	Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs). Atmospheric Chemistry and Physics, 2009, 9, 3049-3060.	1.9	300

#	Article	IF	CITATIONS
55	Evolution of trace gases and particles emitted by a chaparral fire in California. Atmospheric Chemistry and Physics, 2012, 12, 1397-1421.	1.9	300
56	Secondary organic aerosol formation from isoprene photooxidation under high-NOxconditions. Geophysical Research Letters, 2005, 32, n/a-n/a.	1.5	297
5 7	Parameterization of cloud droplet formation in global climate models. Journal of Geophysical Research, 2003, 108, .	3.3	288
58	Aerosol formation in the photooxidation of isoprene and Î ² -pinene. Atmospheric Environment Part A General Topics, 1991, 25, 997-1008.	1.3	278
59	Apportionment of Primary and Secondary Organic Aerosols in Southern California during the 2005 Study of Organic Aerosols in Riverside (SOAR-1). Environmental Science & Technology, 2008, 42, 7655-7662.	4.6	273
60	3â€methylâ€1,2,3â€butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol. Geophysical Research Letters, 2007, 34, .	1.5	268
61	State-of-the-Art Chamber Facility for Studying Atmospheric Aerosol Chemistry. Environmental Science & Technology, 2001, 35, 2594-2601.	4.6	263
62	Chemical Coupling Between Atmospheric Ozone and Particulate Matter. Science, 1997, 277, 116-119.	6.0	256
63	Development and evaluation of a photooxidation mechanism for isoprene. Journal of Geophysical Research, 1992, 97, 20703-20715.	3.3	254
64	Climate response of direct radiative forcing of anthropogenic black carbon. Journal of Geophysical Research, 2005, 110, .	3.3	250
65	A global perspective on aerosol from low-volatility organic compounds. Atmospheric Chemistry and Physics, 2010, 10, 4377-4401.	1.9	250
66	Aerosol absorption and radiative forcing. Atmospheric Chemistry and Physics, 2007, 7, 5237-5261.	1.9	245
67	Global modeling of organic aerosol: the importance of reactive nitrogen (NO _x and NO ₃). Atmospheric Chemistry and Physics, 2010, 10, 11261-11276.	1.9	242
68	Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. Journal of Aerosol Science, 2001, 32, 713-738.	1.8	241
69	Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. Journal of Aerosol Science, 1981, 12, 405-415.	1.8	238
70	Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. Journal of Geophysical Research, 2006, 111, .	3.3	237
71	Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature, 2017, 546, 637-641.	13.7	232
72	Role of climate change in global predictions of future tropospheric ozone and aerosols. Journal of Geophysical Research, 2006, 111, .	3.3	230

#	Article	IF	CITATIONS
73	Formation and evolution of molecular products in α-pinene secondary organic aerosol. Proceedings of the United States of America, 2015, 112, 14168-14173.	3.3	225
74	Gas–particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Physical Chemistry Chemical Physics, 2013, 15, 11441.	1.3	222
75	Global impacts of gas-phase chemistry-aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone. Journal of Geophysical Research, 2005, 110, .	3.3	217
76	The effect of water on gas–particle partitioning of secondary organic aerosol. Part I: α-pinene/ozone system. Atmospheric Environment, 2001, 35, 6049-6072.	1.9	214
77	Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation. Atmospheric Chemistry and Physics, 2012, 12, 3857-3882.	1.9	213
78	Biogenic secondary organic aerosol over the United States: Comparison of climatological simulations with observations. Journal of Geophysical Research, 2007, 112, .	3.3	210
79	Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15019-15024.	3.3	208
80	Equilibration timescale of atmospheric secondary organic aerosol partitioning. Geophysical Research Letters, 2012, 39, .	1.5	202
81	Atmospheric photooxidation of isoprene part I: The hydroxyl radical and ground state atomic oxygen reactions. International Journal of Chemical Kinetics, 1992, 24, 79-101.	1.0	201
82	Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds. Atmospheric Chemistry and Physics, 2014, 14, 3497-3510.	1.9	201
83	New particle formation from photooxidation of diiodomethane (CH2I2). Journal of Geophysical Research, 2003, 108, .	3.3	200
84	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	1.2	199
85	Atmospheric Gas-Aerosol Equilibrium II. Analysis of Common Approximations and Activity Coefficient Calculation Methods. Aerosol Science and Technology, 1993, 19, 182-198.	1.5	196
86	Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors. AICHE Journal, 1986, 32, 2010-2019.	1.8	195
87	Comprehensive Simultaneous Shipboard and Airborne Characterization of Exhaust from a Modern Container Ship at Sea. Environmental Science & Technology, 2009, 43, 4626-4640.	4.6	192
88	Role of aldehyde chemistry and NO _x concentrations in secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2010, 10, 7169-7188.	1.9	190
89	Elemental composition and oxidation of chamber organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8827-8845.	1.9	190
90	Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004. Journal of Geophysical Research, 2006, 111	3.3	187

#	Article	IF	CITATIONS
91	On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols. Aerosol Science and Technology, 1994, 20, 253-265.	1.5	186
92	Development and application of the Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID). Journal of Geophysical Research, 2004, 109, .	3.3	184
93	Secondary organic aerosol 1. Atmospheric chemical mechanism for production of molecular constituents. Journal of Geophysical Research, 2002, 107, AAC 3-1-AAC 3-26.	3.3	183
94	On the Source of Organic Acid Aerosol Layers above Clouds. Environmental Science & Technology, 2007, 41, 4647-4654.	4.6	182
95	Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmospheric Chemistry and Physics, 2013, 13, 8019-8043.	1.9	181
96	Modeling the Formation of Secondary Organic Aerosol (SOA). 2. The Predicted Effects of Relative Humidity on Aerosol Formation in the α-Pinene-, β-Pinene-, Sabinene-, Δ3-Carene-, and Cyclohexene-Ozone Systems. Environmental Science & Technology, 2001, 35, 1806-1817.	4.6	180
97	Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Physical Chemistry Chemical Physics, 2016, 18, 10241-10254.	1.3	179
98	Computation of liquid-liquid equilibria and phase stabilities: implications for RH-dependent gas/particle partitioning of organic-inorganic aerosols. Atmospheric Chemistry and Physics, 2010, 10, 7795-7820.	1.9	177
99	Can chemical effects on cloud droplet number rival the first indirect effect?. Geophysical Research Letters, 2002, 29, 29-1-29-4.	1.5	176
100	Terpenylic Acid and Related Compounds from the Oxidation of α-Pinene: Implications for New Particle Formation and Growth above Forests. Environmental Science & Technology, 2009, 43, 6976-6982.	4.6	175
101	Atmospheric Gas–Aerosol Equilibrium: III. Thermodynamics of Crustal Elements Ca2+, K+, and Mg2+. Aerosol Science and Technology, 1995, 22, 93-110.	1.5	173
102	Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation. Environmental Science & Technology, 2015, 49, 10330-10339.	4.6	172
103	ATMOSPHERIC SCIENCE: Reshaping the Theory of Cloud Formation. Science, 2001, 292, 2025-2026.	6.0	172
104	Kinetic limitations on droplet formation in clouds. Nature, 1997, 390, 594-596.	13.7	170
105	Rapid growth of new atmospheric particles by nitric acid and ammonia condensation. Nature, 2020, 581, 184-189.	13.7	169
106	Atmospheric photooxidation of isoprene part II: The ozone-isoprene reaction. International Journal of Chemical Kinetics, 1992, 24, 103-125.	1.0	166
107	Elemental analysis of chamber organic aerosol using an aerodyne high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2010, 10, 4111-4131.	1.9	165
108	Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States. Environmental Science & Technology, 2010, 44, 4590-4596.	4.6	165

#	Article	IF	CITATIONS
109	Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres. Geophysical Research Letters, 1999, 26, 1145-1148.	1.5	164
110	Overview of the Second Texas Air Quality Study (TexAQS II) and the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2009, 114, .	3.3	162
111	Mathematical model for gas-particle partitioning of secondary organic aerosols. Atmospheric Environment, 1997, 31, 3921-3931.	1.9	157
112	Mechanism of Atmospheric Photooxidation of Aromatics:Â A Theoretical Study. The Journal of Physical Chemistry, 1996, 100, 10967-10980.	2.9	156
113	Inversion of aerosol size distribution data. Journal of Aerosol Science, 1990, 21, 227-247.	1.8	152
114	Aerosol production and growth in the marine boundary layer. Journal of Geophysical Research, 1994, 99, 20989.	3.3	152
115	Secondary organic aerosol 2. Thermodynamic model for gas/particle partitioning of molecular constituents. Journal of Geophysical Research, 2002, 107, AAC 4-1-AAC 4-15.	3.3	152
116	Interactions between tropospheric chemistry and aerosols in a unified general circulation model. Journal of Geophysical Research, 2003, 108, AAC 1-1.	3.3	152
117	Radial Differential Mobility Analyzer. Aerosol Science and Technology, 1995, 23, 357-372.	1.5	150
118	Aerosol Formation in the Cyclohexene-Ozone System. Environmental Science & Technology, 2000, 34, 4894-4901.	4.6	150
119	Gas Phase Production and Loss of Isoprene Epoxydiols. Journal of Physical Chemistry A, 2014, 118, 1237-1246.	1.1	149
120	Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation. Proceedings of the United States of America, 2013, 110, 11746-11750.	3.3	147
121	The general dynamic equation for aerosols. Theory and application to aerosol formation and growth. Journal of Colloid and Interface Science, 1979, 68, 363-382.	5.0	144
122	Simulation of Aerosol Dynamics: A Comparative Review of Mathematical Models. Aerosol Science and Technology, 1986, 5, 205-222.	1.5	140
123	Dynamics of aerosol coagulation and condensation. AICHE Journal, 1976, 22, 840-851.	1.8	139
124	Simulation of Aerosol Size Distribution Evolution in Systems with Simultaneous Nucleation, Condensation, and Coagulation. Aerosol Science and Technology, 1985, 4, 31-43.	1.5	139
125	Improved Inversion of Scanning DMA Data. Aerosol Science and Technology, 2002, 36, 1-9.	1.5	139
126	Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. 1. The Acids as Nondissociating Components. Journal of Physical Chemistry A, 2006, 110, 5692-5717.	1.1	139

#	Article	IF	CITATIONS
127	Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene. Atmospheric Chemistry and Physics, 2011, 11, 1735-1751.	1.9	139
128	Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction. Atmospheric Chemistry and Physics, 2014, 14, 5153-5181.	1.9	137
129	Natural convection in a shallow cavity with differentially heated end walls. Part 2. Numerical solutions. Journal of Fluid Mechanics, 1974, 65, 231-246.	1.4	133
130	α-pinene photooxidation under controlled chemical conditions – Part 2: SOA yield and composition in low- and high-NO _x environments. Atmospheric Chemistry and Physics, 2012, 12, 7413-7427.	1.9	133
131	Reactions of Semivolatile Organics and Their Effects on Secondary Organic Aerosol Formation. Environmental Science & Technology, 2007, 41, 3545-3550.	4.6	129
132	Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	128
133	Characterization of 2-methylglyceric acid oligomers in secondary organic aerosol formed from the photooxidation of isoprene using trimethylsilylation and gas chromatography/ion trap mass spectrometry. Journal of Mass Spectrometry, 2007, 42, 101-116.	0.7	125
134	Vapor wall deposition in Teflon chambers. Atmospheric Chemistry and Physics, 2015, 15, 4197-4214.	1.9	125
135	Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 133-149.	0.8	122
136	Particulate organic acids and overall waterâ€soluble aerosol composition measurements from the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2007, 112, .	3.3	121
137	Modification of aerosol mass and size distribution due to aqueous-phase SO2oxidation in clouds: Comparisons of several models. Journal of Geophysical Research, 2003, 108, .	3.3	120
138	Characterization of polar organic components in fine aerosols in the southeastern United States: Identity, origin, and evolution. Journal of Geophysical Research, 2006, 111, .	3.3	120
139	A Coupled Hydrophobic-Hydrophilic Model for Predicting Secondary Organic Aerosol Formation. Journal of Atmospheric Chemistry, 2003, 44, 171-190.	1.4	118
140	The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. Journal of Geophysical Research, 2007, 112, .	3.3	118
141	Modeling and Characterization of a Particle-into-Liquid Sampler (PILS). Aerosol Science and Technology, 2006, 40, 396-409.	1.5	117
142	Secondary Organic Aerosol Formation from the Ozonolysis of Cycloalkenes and Related Compounds. Environmental Science & Technology, 2004, 38, 4157-4164.	4.6	116
143	Explicit modelling of SOA formation from $\hat{l}\pm$ -pinene photooxidation: sensitivity to vapour pressure estimation. Atmospheric Chemistry and Physics, 2011, 11, 6895-6910.	1.9	116
144	Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,826-11,849.	1.2	116

#	Article	IF	CITATIONS
145	Thermodynamic Models of Aqueous Solutions Containing Inorganic Electrolytes and Dicarboxylic Acids at 298.15 K. 2. Systems Including Dissociation Equilibria. Journal of Physical Chemistry A, 2006, 110, 5718-5734.	1.1	113
146	On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California. Global Biogeochemical Cycles, 2009, 23, .	1.9	113
147	Observational Insights into Aerosol Formation from Isoprene. Environmental Science & Technology, 2013, 47, 11403-11413.	4.6	113
148	Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO _x conditions. Atmospheric Chemistry and Physics, 2011, 11, 10779-10790.	1.9	112
149	Concentrations and sources of organic carbon aerosols in the free troposphere over North America. Journal of Geophysical Research, 2006, 111, .	3.3	111
150	Cloud condensation nucleus activation properties of biogenic secondary organic aerosol. Journal of Geophysical Research, 2005, 110, .	3.3	110
151	Adjoint inverse modeling of black carbon during the Asian Pacific Regional Aerosol Characterization Experiment. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	110
152	Aerosol-cloud drop concentration closure in warm cumulus. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	109
153	Observability and optimal measurement location in linear distributed parameter systemsâ€. International Journal of Control, 1973, 18, 785-799.	1.2	108
154	Formation of secondary organic aerosol from irradiated <i>α</i> â€pinene/toluene/NO _{<i>x</i>} mixtures and the effect of isoprene and sulfur dioxide. Journal of Geophysical Research, 2008, 113, .	3.3	108
155	Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere. Physical Chemistry Chemical Physics, 2015, 17, 17914-17926.	1.3	108
156	Aircraft-based aerosol size and composition measurements during ACE-Asia using an Aerodyne aerosol mass spectrometer. Journal of Geophysical Research, 2003, 108, .	3.3	107
157	Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12053-12058.	3.3	107
158	Occurrence of lower cloud albedo in ship tracks. Atmospheric Chemistry and Physics, 2012, 12, 8223-8235.	1.9	103
159	Atmospheric Photochemical Oxidation of Benzene:Â Benzene + OH and the Benzeneâ^'OH Adduct (Hydroxyl-2,4-cyclohexadienyl) + O2. The Journal of Physical Chemistry, 1996, 100, 6543-6554.	2.9	101
160	Toward aerosol/cloud condensation nuclei (CCN) closure during CRYSTAL-FACE. Journal of Geophysical Research, 2003, 108, .	3.3	101
161	Binary nucleation of sulfuric acid-water: Monte Carlo simulation. Journal of Chemical Physics, 1998, 108, 6829-6848.	1.2	100
162	Impact of nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption. Journal of Geophysical Research, 2006, 111, .	3.3	100

#	Article	IF	CITATIONS
163	Secondary organic aerosol yields of 12-carbon alkanes. Atmospheric Chemistry and Physics, 2014, 14, 1423-1439.	1.9	100
164	Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry. Geophysical Research Letters, 2014, 41, 8645-8651.	1.5	99
165	A STUDY OF PROCESSES THAT GOVERN THE MAINTENANCE OF AEROSOLS IN THE MARINE BOUNDARY LAYER. Journal of Aerosol Science, 1999, 30, 503-532.	1.8	98
166	Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	98
167	Characterization of Vapor Wall Loss in Laboratory Chambers. Environmental Science & Technology, 2010, 44, 5074-5078.	4.6	98
168	The Pasadena Aerosol Characterization Observatory (PACO): chemical and physical analysis of the Western Los Angeles basin aerosol. Atmospheric Chemistry and Physics, 2011, 11, 7417-7443.	1.9	98
169	Aerosol-cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign. Journal of Geophysical Research, 2007, 112, .	3.3	97
170	Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral. Atmospheric Chemistry and Physics, 2015, 15, 6667-6688.	1.9	96
171	Direct evaluation of the equilibrium distribution of physical clusters by a grand canonical Monte Carlo simulation. Journal of Chemical Physics, 1998, 108, 3416-3423.	1.2	95
172	Electron tomography of nanoparticle clusters: Implications for atmospheric lifetimes and radiative forcing of soot. Geophysical Research Letters, 2005, 32, .	1.5	94
173	α-pinene photooxidation under controlled chemical conditions – Part 1: Gas-phase composition in low- and high-NO _x environments. Atmospheric Chemistry and Physics, 2012, 12, 6489-6504.	1.9	93
174	Automatic sensitivity analysis of kinetic mechanisms. International Journal of Chemical Kinetics, 1979, 11, 427-444.	1.0	92
175	A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project. Journal of Geophysical Research, 2003, 108, .	3.3	90
176	Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations. Geophysical Research Letters, 2003, 30, n/a-n/a.	1.5	90
177	Particle Wall Loss Rates in Vessels. Aerosol Science and Technology, 1982, 2, 303-309.	1.5	89
178	Improvement of the Zdanovskiiâ^'Stokesâ^'Robinson Model for Mixtures Containing Solutes of Different Charge Types. Journal of Physical Chemistry A, 2004, 108, 1008-1017.	1.1	89
179	Mass spectrometric characterization of isomeric terpenoic acids from the oxidation of αâ€pinene, βâ€pinene, <i>d</i> â€limonene, and Δ ³ â€carene in fine forest aerosol. Journal of Mass Spectrometry, 2011, 46, 425-442.	0.7	89
180	Eastern Pacific Emitted Aerosol Cloud Experiment. Bulletin of the American Meteorological Society, 2013, 94, 709-729.	1.7	89

#	Article	IF	CITATIONS
181	Formation of highly oxygenated low-volatility products from cresol oxidation. Atmospheric Chemistry and Physics, 2017, 17, 3453-3474.	1.9	89
182	Air pollution: A half century of progress. AICHE Journal, 2004, 50, 1096-1108.	1.8	87
183	Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 8323-8341.	1.9	87
184	Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL-FACE and CSTRIPE. Journal of Geophysical Research, 2005, 110, .	3.3	86
185	Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity. Atmospheric Chemistry and Physics, 2010, 10, 1585-1597.	1.9	86
186	Will black carbon mitigation dampen aerosol indirect forcing?. Geophysical Research Letters, 2010, 37,	1.5	86
187	Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols. Atmospheric Chemistry and Physics, 2015, 15, 5027-5045.	1.9	86
188	lsoprene NO ₃ Oxidation Products from the RO ₂ + HO ₂ Pathway. Journal of Physical Chemistry A, 2015, 119, 10158-10171.	1.1	86
189	Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2009, 114, .	3.3	85
190	Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol. Environmental Science & Technology, 2018, 52, 1191-1199.	4.6	85
191	Optimal location of process measurements. International Journal of Control, 1975, 21, 1003-1014.	1.2	84
192	Chemical aging of <i>m</i> -xylene secondary organic aerosol: laboratory chamber study. Atmospheric Chemistry and Physics, 2012, 12, 151-167.	1.9	83
193	Emission factor ratios, SOA mass yields, and the impact of vehicular emissions on SOA formation. Atmospheric Chemistry and Physics, 2014, 14, 2383-2397.	1.9	83
194	Primary marine aerosolâ€cloud interactions off the coast of California. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4282-4303.	1.2	83
195	Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 133.	0.8	81
196	Impact of biomass burning on cloud properties in the Amazon Basin. Journal of Geophysical Research, 2003, 108, .	3.3	81
197	Molecular composition of the water-soluble fraction of atmospheric carbonaceous aerosols collected during ACE-Asia. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	80
198	Three-dimensional simulations of inorganic aerosol distributions in east Asia during spring 2001. Journal of Geophysical Research, 2004, 109, .	3.3	80

#	Article	IF	CITATIONS
199	Study of the Aerosol Indirect Effect by Large-Eddy Simulation of Marine Stratocumulus. Journals of the Atmospheric Sciences, 2005, 62, 3909-3932.	0.6	80
200	Constraining the contribution of organic acids and AMS <i>m/z</i> 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region. Geophysical Research Letters, 2010, 37, .	1.5	79
201	Measurements of Isoprene-Derived Organosulfates in Ambient Aerosols by Aerosol Time-of-Flight Mass Spectrometry—Part 2: Temporal Variability and Formation Mechanisms. Environmental Science & Technology, 2011, 45, 8648-8655.	4.6	79
202	Secondary Organic Aerosol Formation from Low-NO _{<i>x</i>} Photooxidation of Dodecane: Evolution of Multigeneration Gas-Phase Chemistry and Aerosol Composition. Journal of Physical Chemistry A, 2012, 116, 6211-6230.	1.1	79
203	Composition and hygroscopicity of the Los Angeles Aerosol: CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3016-3036.	1.2	79
204	An outdoor smog chamber and modeling study of toluene-NOx photooxidation. International Journal of Chemical Kinetics, 1985, 17, 177-216.	1.0	78
205	A model for the radiative forcing during ACE-Asia derived from CIRPAS Twin Otter and R/VRonald H. Browndata and comparison with observations. Journal of Geophysical Research, 2003, 108, .	3.3	78
206	Black carbon aerosol over the Los Angeles Basin during CalNex. Journal of Geophysical Research, 2012, 117, .	3.3	77
207	Role of isoprene in secondary organic aerosol formation on a regional scale. Journal of Geophysical Research, 2007, 112, .	3.3	75
208	Ship impacts on the marine atmosphere: insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmospheric Chemistry and Physics, 2012, 12, 8439-8458.	1.9	75
209	Influence of seed aerosol surface area and oxidation rate on vapor wall deposition and SOA mass yields: a case study with <i>l±</i> -pinene ozonolysis. Atmospheric Chemistry and Physics, 2016, 16, 9361-9379.	1.9	75
210	Asymmetric Instrument Response Resulting from Mixing Effects in Accelerated DMA-CPC Measurements. Aerosol Science and Technology, 1995, 23, 491-509.	1.5	74
211	Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas/particle partitioning associated with secondary organic aerosol formation. Journal of Geophysical Research, 2005, 110, .	3.3	74
212	Kinetic modeling of secondary organic aerosol formation: effects of particle- and gas-phase reactions of semivolatile products. Atmospheric Chemistry and Physics, 2007, 7, 4135-4147.	1.9	74
213	Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016. Environmental Chemistry Letters, 2018, 16, 301-309.	8.3	74
214	Particle generation in a chemical vapor deposition process with seed particles. AICHE Journal, 1990, 36, 409-419.	1.8	73
215	Aerosolâ€cloud relationships in continental shallow cumulus. Journal of Geophysical Research, 2008, 113, .	3.3	72
216	Peroxy radical chemistry and OH radical production during the NO ₃ -initiated oxidation of isoprene. Atmospheric Chemistry and Physics, 2012, 12, 7499-7515.	1.9	72

#	Article	IF	CITATIONS
217	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. Environmental Science & Technology, 2020, 54, 8568-8579.	4.6	72
218	Secondary organic aerosol 3. Urban/regional scale model of size- and composition-resolved aerosols. Journal of Geophysical Research, 2002, 107, AAC 5-1-AAC 5-14.	3.3	71
219	Ozone productivity of atmospheric organics. Journal of Geophysical Research, 1994, 99, 5309.	3.3	70
220	Review of Numerical Integration Techniques for Stiff Ordinary Differential Equations. Industrial & Engineering Chemistry Fundamentals, 1970, 9, 266-275.	0.7	69
221	Column closure studies of lower tropospheric aerosol and water vapor during ACE-Asia using airborne Sun photometer and airborne in situ and ship-based lidar measurements. Journal of Geophysical Research, 2003, 108, ACE 24-1-ACE 24-22.	3.3	68
222	Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmospheric Measurement Techniques, 2012, 5, 1259-1269.	1.2	68
223	Unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: implications for air quality. Environmental Chemistry Letters, 2020, 18, 1713-1723.	8.3	68
224	Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing. Journal of Geophysical Research, 2006, 111, .	3.3	66
225	Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 1. Extended KA¶hler theory. Journal of Geophysical Research, 2002, 107, AAC 23-1-AAC 23-9.	3.3	65
226	The Scanning DMA Transfer Function. Aerosol Science and Technology, 2004, 38, 833-850.	1.5	65
227	Rapid, Size-Resolved Aerosol Hygroscopic Growth Measurements: Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP). Aerosol Science and Technology, 2008, 42, 445-464.	1.5	65
228	Marine stratocumulus aerosolâ€cloud relationships in the MASEâ€II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus. Journal of Geophysical Research, 2009, 114, .	3.3	65
229	A New Algorithm for Inversion of Aerosol Size Distribution Data. Aerosol Science and Technology, 1981, 1, 15-34.	1.5	64
230	Clear-column radiative closure during ACE-Asia: Comparison of multiwavelength extinction derived from particle size and composition with results from Sun photometry. Journal of Geophysical Research, 2002, 107, AAC 7-1-AAC 7-22.	3.3	64
231	Aerosol hygroscopicity in the marine atmosphere: a closure study using high-time-resolution, multiple-RH DASH-SP and size-resolved C-ToF-AMS data. Atmospheric Chemistry and Physics, 2009, 9, 2543-2554.	1.9	64
232	Nucleation and Growth of Aerosol From a Continuously Reinforced Vapor. Aerosol Science and Technology, 1984, 3, 135-153.	1.5	62
233	Rapid Aqueous-Phase Hydrolysis of Ester Hydroperoxides Arising from Criegee Intermediates and Organic Acids. Journal of Physical Chemistry A, 2018, 122, 5190-5201.	1.1	62
234	Diffusion-Limited Versus Quasi-Equilibrium Aerosol Growth. Aerosol Science and Technology, 2012, 46, 874-885.	1.5	61

#	Article	IF	CITATIONS
235	Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds. Atmospheric Chemistry and Physics, 2014, 14, 13531-13549.	1.9	60
236	SOA formation from the photooxidation ofÂ <i>l̂±</i> -pinene: systematic exploration ofÂthe simulation ofÂchamber data. Atmospheric Chemistry and Physics, 2016, 16, 2785-2802.	1.9	60
237	The Use of Ambient Measurements To Identify which Precursor Species Limit Aerosol Nitrate Formation. Journal of the Air and Waste Management Association, 2000, 50, 2073-2084.	0.9	57
238	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – Part 2: Assessing the influence of vapor wall losses. Atmospheric Chemistry and Physics, 2016, 16, 3041-3059.	1.9	57
239	Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment. Journal of Geophysical Research, 2009, 114, .	3.3	56
240	Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	56
241	Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County. Atmospheric Chemistry and Physics, 2011, 11, 8257-8270.	1.9	56
242	Observation of playa salts as nuclei in orographic wave clouds. Journal of Geophysical Research, 2010, 115, .	3.3	55
243	Efficient control of atmospheric sulfate production based on three formation regimes. Nature Geoscience, 2019, 12, 977-982.	5.4	55
244	Nanometer-Sized Particle Formation from NH3/SO2/H2O/Air Mixtures by Ionizing Irradiation. Aerosol Science and Technology, 1998, 29, 111-125.	1.5	54
245	Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols. Journal of Geophysical Research, 2008, 113, .	3.3	54
246	A practical method for the calculation of liquid–liquid equilibria in multicomponent organic–water–electrolyte systems using physicochemical constraints. Fluid Phase Equilibria, 2013, 337, 201-213.	1.4	54
247	Projected effect of 2000–2050 changes in climate and emissions on aerosol levels in China and associated transboundary transport. Atmospheric Chemistry and Physics, 2013, 13, 7937-7960.	1.9	54
248	Biogenic and biomass burning organic aerosol in a boreal forest at HyytiäPFinland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	1.9	53
249	Secondary Organic Aerosol Composition from C ₁₂ Alkanes. Journal of Physical Chemistry A, 2015, 119, 4281-4297.	1.1	53
250	Kinetics of binary nucleation: Multiple pathways and the approach to stationarity. Journal of Chemical Physics, 1990, 93, 9033-9041.	1.2	52
251	Ionâ€induced nucleation: A density functional approach. Journal of Chemical Physics, 1995, 102, 913-924.	1.2	52
252	Clouds, contrails and climate. Nature, 1998, 391, 837-838.	13.7	52

#	Article	IF	CITATIONS
253	Effect of chemistryâ€aerosol limate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols. Journal of Geophysical Research, 2009, 114, .	3.3	52
254	Vapor–Wall Deposition in Chambers: Theoretical Considerations. Environmental Science & Technology, 2014, 48, 10251-10258.	4.6	52
255	Unified Theory of Vapor–Wall Mass Transport in Teflon-Walled Environmental Chambers. Environmental Science & Technology, 2018, 52, 2134-2142.	4.6	52
256	Anvil glaciation in a deep cumulus updraught over Florida simulated with the Explicit Microphysics Model. I: Impact of various nucleation processes. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 2019-2046.	1.0	51
257	Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 2019, 100, 1511-1528.	1.7	51
258	Ozone Air Quality Models. Japca, 1988, 38, 616-645.	0.3	50
259	Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments. Atmospheric Chemistry and Physics, 2017, 17, 2297-2310.	1.9	50
260	From COVID-19 to future electrification: Assessing traffic impacts on air quality by a machine-learning model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	50
261	Nonisothermal homogeneous nucleation. Journal of Chemical Physics, 1992, 97, 2661-2670.	1.2	49
262	Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign. Journal of Geophysical Research, 2011, 116, .	3.3	49
263	A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. Atmospheric Chemistry and Physics, 2011, 11, 9749-9769.	1.9	49
264	Effect of chemical structure on secondary organic aerosol formation from C ₁₂ alkanes. Atmospheric Chemistry and Physics, 2013, 13, 11121-11140.	1.9	48
265	Homogeneous Nucleation by Continuous Mixing of High Temperature Vapor with Room Temperature Gas. Aerosol Science and Technology, 1987, 6, 15-27.	1.5	47
266	Ionâ€induced nucleation. II. Polarizable multipolar molecules. Journal of Chemical Physics, 1995, 103, 8993-9009.	1.2	47
267	Size- and Composition-Resolved Externally Mixed Aerosol Model. Aerosol Science and Technology, 1998, 28, 403-416.	1.5	47
268	Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect 2. Cloud microphysics. Journal of Geophysical Research, 2002, 107, AAC 24-1-AAC 24-11.	3.3	46
269	On the Mixing and Evaporation of Secondary Organic Aerosol Components. Environmental Science & Technology, 2013, 47, 6173-6180.	4.6	46
270	Under What Conditions Can Equilibrium Gas–Particle Partitioning Be Expected to Hold in the Atmosphere?. Environmental Science & Technology, 2015, 49, 11485-11491.	4.6	46

#	Article	IF	CITATIONS
271	Low-volatility compounds contribute significantly to isoprene secondary organic aerosol (SOA) under high-NO _{<i>x</i>} conditions. Atmospheric Chemistry and Physics, 2019, 19, 7255-7278.	1.9	46
272	Airborne measurements of atmospheric carbonaceous aerosols during ACE-Asia. Journal of Geophysical Research, 2002, 107, AAC 13-1-AAC 13-21.	3.3	45
273	The effect on photochemical smog of converting the U.S. fleet of gasoline vehicles to modern diesel vehicles. Geophysical Research Letters, 2004, 31, .	1.5	45
274	Application of the Statistical Oxidation Model (SOM) to Secondary Organic Aerosol formation from photooxidation of C ₁₂ alkanes. Atmospheric Chemistry and Physics, 2013, 13, 1591-1606.	1.9	45
275	lodometry-Assisted Liquid Chromatography Electrospray Ionization Mass Spectrometry for Analysis of Organic Peroxides: An Application to Atmospheric Secondary Organic Aerosol. Environmental Science & Technology, 2018, 52, 2108-2117.	4.6	45
276	Synergistic O ₃ + OH oxidation pathway to extremely low-volatility dimers revealed in β-pinene secondary organic aerosol. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8301-8306.	3.3	45
277	Cloud condensation nuclei prediction error from application of Köhler theory: Importance for the aerosol indirect effect. Journal of Geophysical Research, 2007, 112, .	3.3	44
278	Atmospheric chemistryâ \in elimate feedbacks. Journal of Geophysical Research, 2010, 115, .	3.3	44
279	Role of ozone in SOA formation from alkane photooxidation. Atmospheric Chemistry and Physics, 2014, 14, 1733-1753.	1.9	43
280	Transient kinetics of nucleation and crystallization: Part I. Nucleation. Journal of Materials Research, 1991, 6, 2091-2096.	1.2	42
281	Environmental snapshots from ACE-Asia. Journal of Geophysical Research, 2004, 109, .	3.3	42
282	Analysis of secondary organic aerosol formation and aging using positive matrix factorization of high-resolution aerosol mass spectra: application to the dodecane low-NO _x system. Atmospheric Chemistry and Physics, 2012, 12, 11795-11817.	1.9	42
283	Secondary Organic Aerosol Coating Formation and Evaporation: Chamber Studies Using Black Carbon Seed Aerosol and the Single-Particle Soot Photometer. Aerosol Science and Technology, 2013, 47, 326-347.	1.5	42
284	Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. Environmental Science & Technology, 2016, 50, 12241-12249.	4.6	42
285	A Differential Mobility Analyzer (DMA) System for Submicron Aerosol Measurements at Ambient Relative Humidity. Aerosol Science and Technology, 2003, 37, 46-52.	1.5	41
286	Sensitivity and uncertainty of reaction mechanisms for photochemical air pollution. International Journal of Chemical Kinetics, 1979, 11, 1137-1162.	1.0	40
287	Stochastic sensitivity analysis in chemical kinetics. Journal of Chemical Physics, 1981, 74, 3852-3858.	1.2	40
288	Determination of Water Activity in Ammonium Sulfate and Sulfuric Acid Mixtures Using Levitated Single Particles. Aerosol Science and Technology, 1994, 20, 275-284.	1.5	40

#	Article	IF	CITATIONS
289	Satellite-Derived Correlation of SO2, NO2, and Aerosol Optical Depth with Meteorological Conditions over East Asia from 2005 to 2015. Remote Sensing, 2019, 11, 1738.	1.8	40
290	A functional group oxidation model (FGOM) for SOA formation and aging. Atmospheric Chemistry and Physics, 2013, 13, 5907-5926.	1.9	39
291	The Caltech Photooxidation Flow Tube reactor: design, fluid dynamics and characterization. Atmospheric Measurement Techniques, 2017, 10, 839-867.	1.2	39
292	Production and Fate of C ₄ Dihydroxycarbonyl Compounds from Isoprene Oxidation. Journal of Physical Chemistry A, 2016, 120, 106-117.	1.1	38
293	Estimation of spatially varying parameters in partial differential equationsâ€. International Journal of Control, 1972, 15, 487-495.	1.2	37
294	Fourier transform infrared spectroscopy of a single aerosol particle. Journal of Chemical Physics, 1987, 86, 5897-5903.	1.2	36
295	Gas/Aerosol Distribution of Formic and Acetic Acids. Aerosol Science and Technology, 1995, 23, 561-578.	1.5	36
296	Experimental Measurement of Competitive Ion-Induced and Binary Homogeneous Nucleation in SO2/H2O/N2Mixtures. Aerosol Science and Technology, 1997, 26, 527-543.	1.5	36
297	Characterization of ambient aerosol from measurements of cloud condensation nuclei during the 2003 Atmospheric Radiation Measurement Aerosol Intensive Observational Period at the Southern Great Plains site in Oklahoma. Journal of Geophysical Research, 2006, 111, .	3.3	35
298	Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China. Scientific Reports, 2018, 8, 934.	1.6	35
299	Facilitated Aerosol Sizing Using the Differential Mobility Analyzer. Aerosol Science and Technology, 1990, 12, 225-239.	1.5	34
300	Inverse Modeling of Aerosol Dynamics Using Adjoints: Theoretical and Numerical Considerations. Aerosol Science and Technology, 2005, 39, 677-694.	1.5	34
301	Multi-generational oxidation model to simulate secondary organic aerosol in a 3-D air quality model. Geoscientific Model Development, 2015, 8, 2553-2567.	1.3	34
302	Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols. Atmospheric Chemistry and Physics, 2016, 16, 12767-12792.	1.9	34
303	Nonlinear Filtering in Distributed Parameter Systems. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1971, 93, 157-163.	0.9	33
304	On the representation of droplet coalescence and autoconversion: Evaluation using ambient cloud droplet size distributions. Journal of Geophysical Research, 2009, 114, .	3.3	33
305	Observations of continental biogenic impacts on marine aerosol and clouds off the coast of California. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6724-6748.	1.2	33
306	Precipitation effects of giant cloud condensation nuclei artificially introduced into stratocumulus clouds. Atmospheric Chemistry and Physics, 2015, 15, 5645-5658.	1.9	33

#	Article	IF	CITATIONS
307	Modeling secondary organic aerosol formation from volatile chemical products. Atmospheric Chemistry and Physics, 2021, 21, 18247-18261.	1.9	33
308	Updated chemical mechanism for atmospheric photooxidation of toluene. International Journal of Chemical Kinetics, 1984, 16, 159-193.	1.0	32
309	Fundamental basis of incremental reactivities of organics in ozone formation in VOC/NOx mixtures. Atmospheric Environment, 1994, 28, 3359-3368.	1.9	31
310	Statistical comparison of properties of simulated and observed cumulus clouds in the vicinity of Houston during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). Journal of Geophysical Research, 2008, 113, .	3.3	31
311	Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model – PartÂ1: Assessing the influence of constrained multi-generational ageing. Atmospheric Chemistry and Physics, 2016, 16, 2309-2322.	1.9	31
312	Synthesis of Carboxylic Acid and Dimer Ester Surrogates to Constrain the Abundance and Distribution of Molecular Products in α-Pinene and β-Pinene Secondary Organic Aerosol. Environmental Science & Technology, 2020, 54, 12829-12839.	4.6	31
313	Unexpected Oligomerization of Small α-Dicarbonyls for Secondary Organic Aerosol and Brown Carbon Formation. Environmental Science & Technology, 2021, 55, 4430-4439.	4.6	31
314	An Evaluation of Mean Reynolds Stress Turbulence Models: The Triple Velocity Correlation. Journal of Fluids Engineering, Transactions of the ASME, 1978, 100, 47-54.	0.8	30
315	Coupling Thermodynamic Theory with Measurements to Characterize Acidity of Atmospheric Particles. Aerosol Science and Technology, 1993, 19, 279-293.	1.5	30
316	Aerosol Growth in a Steady-State, Continuous Flow Chamber: Application to Studies of Secondary Aerosol Formation. Aerosol Science and Technology, 2003, 37, 728-734.	1.5	30
317	Future climate impacts of direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and longâ€lived greenhouse gases. Journal of Geophysical Research, 2007, 112, .	3.3	30
318	Hygroscopic properties of smoke-generated organic aerosol particles emitted in the marine atmosphere. Atmospheric Chemistry and Physics, 2013, 13, 9819-9835.	1.9	30
319	Relationships between giant sea salt particles and clouds inferred from aircraft physicochemical data. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3421-3434.	1.2	30
320	Impacts of household sources on air pollution at village and regional scales in India. Atmospheric Chemistry and Physics, 2019, 19, 7719-7742.	1.9	30
321	Combined forced and free convection flow past a horizontal flat plate. AICHE Journal, 1973, 19, 998-1008.	1.8	29
322	The application of an approximate non-linear filter to systems governed by coupled ordinary and partial differential equations. International Journal of Systems Science, 1975, 6, 313-332.	3.7	29
323	A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds. Scientific Data, 2018, 5, 180026.	2.4	29
324	Multigeneration Production of Secondary Organic Aerosol from Toluene Photooxidation. Environmental Science & Technology, 2021, 55, 8592-8603.	4.6	29

#	Article	IF	CITATIONS
325	Large scale control of surface ozone by relative humidity observed during warm seasons in China. Environmental Chemistry Letters, 2021, 19, 3981-3989.	8.3	29
326	Reduced European aerosol emissions suppress winter extremes over northern Eurasia. Nature Climate Change, 2020, 10, 225-230.	8.1	29
327	A new algorithm for the estimation of parameters in ordinary differential equations. AICHE Journal, 1972, 18, 90-93.	1.8	28
328	Parameterization of cloud droplet size distributions: Comparison with parcel models and observations. Journal of Geophysical Research, 2009, 114, .	3.3	28
329	<i>In Situ</i> Study of Single Aqueous Droplet Solidification of Ceramic Precursors Used for Spray Pyrolysis. Journal of the American Ceramic Society, 1998, 81, 646-648.	1.9	27
330	High reduction of ozone and particulate matter during the 2016 G-20 summit in Hangzhou by forced emission controls of industry and traffic. Environmental Chemistry Letters, 2017, 15, 709-715.	8.3	27
331	Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3704-3723.	1.2	27
332	Computational Simulation of Secondary Organic Aerosol Formation in Laboratory Chambers. Chemical Reviews, 2019, 119, 11912-11944.	23.0	27
333	Transient kinetics of nucleation and crystallization: Part II. Crystallization. Journal of Materials Research, 1991, 6, 2097-2102.	1.2	26
334	Global climate response to anthropogenic aerosol indirect effects: Present day and year 2100. Journal of Geophysical Research, 2010, 115, .	3.3	26
335	Residential emissions predicted as a major source of fine particulate matter in winter over the Yangtze River Delta, China. Environmental Chemistry Letters, 2018, 16, 1117-1127.	8.3	26
336	Probing the OH Oxidation of Pinonic Acid at the Air–Water Interface Using Field-Induced Droplet Ionization Mass Spectrometry (FIDI-MS). Journal of Physical Chemistry A, 2018, 122, 6445-6456.	1.1	26
337	Ammonia emission abatement does not fully control reduced forms of nitrogen deposition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9771-9775.	3.3	26
338	Particle sizing in the electrodynamic balance. Review of Scientific Instruments, 1986, 57, 933-936.	0.6	25
339	Incremental Aerosol Reactivity:Â Application to Aromatic and Biogenic Hydrocarbons. Environmental Science & Technology, 1999, 33, 2403-2408.	4.6	25
340	Biomass Burning Plumes in the Vicinity of the California Coast: Airborne Characterization of Physicochemical Properties, Heating Rates, and Spatiotemporal Features. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,560.	1.2	25
341	Meteorological and aerosol effects on marine cloud microphysical properties. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4142-4161.	1.2	24
342	Stratocumulus Cloud Clearings and Notable Thermodynamic and Aerosol Contrasts across the Clear–Cloudy Interface. Journals of the Atmospheric Sciences, 2016, 73, 1083-1099.	0.6	24

#	Article	IF	CITATIONS
343	Distributed parameter filtering: boundary noise and discrete observations. International Journal of Systems Science, 1979, 10, 493-512.	3.7	23
344	City-level air quality improvement in the Beijing-Tianjin-Hebei region from 2016/17 to 2017/18 heating seasons: Attributions and process analysis. Environmental Pollution, 2021, 274, 116523.	3.7	23
345	Filtering and Smoothing for Linear Discrete-Time Distributed Parameter Systems Based on Wiener-Hopf Theory with Application to Estimation of Air Pollution. IEEE Transactions on Systems, Man, and Cybernetics, 1981, 11, 785-801.	0.9	22
346	Effect of particle charge on aerosol dynamics in Teflon environmental chambers. Aerosol Science and Technology, 2018, 52, 854-871.	1.5	22
347	Contrasting cloud composition between coupled and decoupled marine boundary layer clouds. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,679.	1.2	21
348	Prediction of bond dissociation energies and transition state barriers by a modified complete basis set model chemistry. Journal of Chemical Physics, 1997, 107, 1513-1521.	1.2	20
349	Evaluation of an entraining droplet activation parameterization using in situ cloud data. Journal of Geophysical Research, 2011, 116, .	3.3	20
350	Studies in binary nucleation: The dibutylphthalate/dioctylphthalate system. Journal of Chemical Physics, 1988, 89, 6442-6453.	1.2	19
351	Inverse modeling of aerosol dynamics: Condensational growth. Journal of Geophysical Research, 2004, 109, .	3.3	19
352	Oligomeric products and formation mechanisms from acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate particles. Journal of Atmospheric Chemistry, 2013, 70, 1-18.	1.4	19
353	Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions. Atmospheric Chemistry and Physics, 2020, 20, 2419-2443.	1.9	19
354	Analytical Solution of the Multicomponent Aerosol General Dynamic Equation—without Coagulation. Aerosol Science and Technology, 1997, 27, 541-549.	1.5	18
355	High-altitude and long-range transport of aerosols causing regional severe haze during extreme dust storms explains why afforestation does not prevent storms. Environmental Chemistry Letters, 2019, 17, 1333-1340.	8.3	18
356	Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition. Journal of Geophysical Research D: Atmospheres, 2019, 124, 12301-12318.	1.2	18
357	Common source areas of air pollution vary with haze intensity in the Yangtze River Delta, China. Environmental Chemistry Letters, 2020, 18, 957-965.	8.3	18
358	Primal-Dual Interior-Point Method for an Optimization Problem Related to the Modeling of Atmospheric Organic Aerosols. Journal of Optimization Theory and Applications, 2006, 130, 377-409.	0.8	17
359	Air quality impact of the Northern California Camp Fire of November 2018. Atmospheric Chemistry and Physics, 2020, 20, 14597-14616.	1.9	17
360	Further Results on Inversion of Aerosol Size Distribution Data: Higher-Order Sobolev Spaces and Constraints. Aerosol Science and Technology, 1982, 1, 363-369.	1.5	16

#	Article	IF	CITATIONS
361	Insights on global warming. AICHE Journal, 2011, 57, 3259-3284.	1.8	16
362	Cloud Adiabaticity and Its Relationship to Marine Stratocumulus Characteristics Over the Northeast Pacific Ocean. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,790.	1.2	16
363	Scanning DMA data analysis II. Integrated DMA-CPC instrument response and data inversion. Aerosol Science and Technology, 2018, 52, 1400-1414.	1.5	16
364	Rate constants for the gas-phase reaction of the hydroxyl radical with a series of dimethylbenzaldehydes and trimethylphenols at atmospheric pressure. International Journal of Chemical Kinetics, 1997, 29, 523-525.	1.0	15
365	Ion Mobility-Mass Spectrometry with a Radial Opposed Migration Ion and Aerosol Classifier (ROMIAC). Analytical Chemistry, 2013, 85, 6319-6326.	3.2	15
366	Inorganic and black carbon aerosols in the Los Angeles Basin during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1777-1803.	1.2	15
367	Photopolarimetric Sensitivity to Black Carbon Content of Wildfire Smoke: Results From the 2016 ImPACTâ€PM Field Campaign. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5376-5396.	1.2	15
368	Mitigation of severe urban haze pollution by a precision air pollution control approach. Scientific Reports, 2018, 8, 8151.	1.6	15
369	Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations. Earth and Space Science, 2020, 7, e2020EA001098.	1.1	15
370	Evaporation and Growth of Multicomponent Aerosols Laboratory Applications. Aerosol Science and Technology, 1987, 6, 1-14.	1.5	14
371	Analytical–Numerical Solution of the Multicomponent Aerosol General Dynamic Equation—with Coagulation. Aerosol Science and Technology, 1997, 27, 550-556.	1.5	14
372	Marine aerosols and iodine emissions (Reply). Nature, 2005, 433, E13-E14.	13.7	14
373	A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol— <i>α</i> â€Pinene ozonolysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,476.	1.2	14
374	Aerosol behavior in the continuous stirred tank reactor. AICHE Journal, 1980, 26, 610-616.	1.8	13
375	Computational simulation of the dynamics of secondary organic aerosol formation in an environmental chamber. Aerosol Science and Technology, 2018, 52, 470-482.	1.5	13
376	Significant wintertime PM _{2.5} mitigation in the Yangtze River Delta, China, from 2016 to 2019: observational constraints on anthropogenic emission controls. Atmospheric Chemistry and Physics, 2020, 20, 14787-14800.	1.9	13
377	A phase equilibrium model for atmospheric aerosols containing inorganic electrolytes and organic compounds (UHAERO), with application to dicarboxylic acids. Journal of Geophysical Research, 2007, 112, .	3.3	12
970	Science of the Environmental Chember 2017 102		

Science of the Environmental Chamber. , 2017, , 1-93.

#	Article	IF	CITATIONS
379	Design, simulation, and characterization of a radial opposed migration ion and aerosol classifier (ROMIAC). Aerosol Science and Technology, 2017, 51, 801-823.	1.5	11
380	100 Years of Progress in Gas-Phase Atmospheric Chemistry Research. Meteorological Monographs, 2019, 59, 10.1-10.52.	5.0	11
381	Secondary organic aerosol yields from the oxidation of benzyl alcohol. Atmospheric Chemistry and Physics, 2020, 20, 13167-13190.	1.9	11
382	Process-Level Modeling Can Simultaneously Explain Secondary Organic Aerosol Evolution in Chambers and Flow Reactors. Environmental Science & Technology, 2022, 56, 6262-6273.	4.6	11
383	Instantaneous concentration fluctuations in point-source plumes. AICHE Journal, 1986, 32, 1642-1654.	1.8	10
384	Primal-Dual Active-Set Algorithm for Chemical Equilibrium Problems Related to the Modeling of Atmospheric Inorganic Aerosols. Journal of Optimization Theory and Applications, 2006, 128, 469-498.	0.8	10
385	On the presence of giant particles downwind of ships in the marine boundary layer. Geophysical Research Letters, 2015, 42, 2024-2030.	1.5	10
386	Optimal control of a continuous stirred tank reactor with transportation lag. International Journal of Control, 1969, 10, 29-39.	1.2	9
387	Secondary organic aerosol formation from the oxidation of decamethylcyclopentasiloxane at atmospherically relevant OH concentrations. Atmospheric Chemistry and Physics, 2022, 22, 917-928.	1.9	9
388	Estimation of Atmospheric Species Concentrations from Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 1982, GE-20, 142-153.	2.7	8
389	Aerosol Dynamics in Atmospheric Aromatic Photooxidation. Aerosol Science and Technology, 1989, 10, 515-534.	1.5	8
390	Dynamic scaling of the cluster-size distribul nucleation: Precoalescence stages. AICHE Journal, 1994, 40, 11-18.	1.8	8
391	Importance of composition and hygroscopicity of BC particles to the effect of BC mitigation on cloud properties: Application to California conditions. Journal of Geophysical Research, 2012, 117, .	3.3	8
392	Los Angeles Basin airborne organic aerosol characterization during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,453.	1.2	8
393	Emissions Measurements from Household Solid Fuel Use in Haryana, India: Implications for Climate and Health Co-benefits. Environmental Science & Technology, 2021, 55, 3201-3209.	4.6	8
394	Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). Bulletin of the American Meteorological Society, 0, , 130109100058001.	1.7	8
395	Direct measurements of ozone response to emissions perturbations in California. Atmospheric Chemistry and Physics, 2022, 22, 4929-4949.	1.9	8
396	Suboptimal control of stochastic distributed parameter systems. AICHE Journal, 1973, 19, 389-392.	1.8	7

#	Article	IF	CITATIONS
397	Analytical solution for transient partitioning and reaction of a condensing vapor species in a droplet. Atmospheric Environment, 2014, 89, 651-654.	1.9	7
398	Coupling Filter-Based Thermal Desorption Chemical Ionization Mass Spectrometry with Liquid Chromatography/Electrospray Ionization Mass Spectrometry for Molecular Analysis of Secondary Organic Aerosol. Environmental Science & Technology, 2020, 54, 13238-13248.	4.6	7
399	Rapid assessments of light-duty gasoline vehicle emissions using on-road remote sensing and machine learning. Science of the Total Environment, 2022, 815, 152771.	3.9	7
400	Existence and comparison theorems for partial differential equations of Riccati type. Journal of Optimization Theory and Applications, 1982, 36, 263-276.	0.8	6
401	Selective nucleation of silicon clusters in CVD. Journal of Materials Research, 1992, 7, 1809-1815.	1.2	6
402	Ensemble Methods for Dynamic Data Assimilation of Chemical Observations in Atmospheric Models. Journal of Algorithms and Computational Technology, 2011, 5, 667-692.	0.4	6
403	CCN Properties of Organic Aerosol Collected Below and within Marine Stratocumulus Clouds near Monterey, California. Atmosphere, 2015, 6, 1590-1607.	1.0	6
404	A note on flow behavior in axially-dispersed plug flow reactors with step input of tracer. Atmospheric Environment: X, 2019, 1, 100006.	0.8	6
405	On the relationship between cloud water composition and cloud droplet number concentration. Atmospheric Chemistry and Physics, 2020, 20, 7645-7665.	1.9	6
406	Observations of Volatile Organic Compounds in the Los Angeles Basin during COVID-19. ACS Earth and Space Chemistry, 2021, 5, 3045-3055.	1.2	6
407	Hyperfine-resolution mapping of on-road vehicle emissions with comprehensive traffic monitoring and an intelligent transportation system. Atmospheric Chemistry and Physics, 2021, 21, 16985-17002.	1.9	6
408	The accuracy of kinetic parameters estimated from batch and integral reactor data. Canadian Journal of Chemical Engineering, 1970, 48, 420-427.	0.9	5
409	Determination of Optimal Multiyear Air Pollution Control Policies. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1972, 94, 266-274.	0.9	5
410	Real-time control of air pollution. AICHE Journal, 1973, 19, 579-589.	1.8	5
411	On meeting the provisions of the clean air act. AICHE Journal, 1974, 20, 118-127.	1.8	5
412	Aerosol Properties Computed from Aircraft-Based Observations During the ACE-Asia Campaign: 2. A Case Study of Lidar Ratio Closure. Aerosol Science and Technology, 2007, 41, 231-243.	1.5	5
413	The nano-scanning electrical mobility spectrometer (nSEMS) and its application to size distribution measurements of 1.5–25 nm particles. Atmospheric Measurement Techniques, 2021, 14, 5429-5445.	1.2	5
414	Synthesis of sub-optimal feedback controls for a class of distributed parameter systems. International Journal of Control, 1968, 7, 417-424.	1.2	4

#	Article	IF	CITATIONS
415	Effect of Angle of Attack on the Performance of an Airborne Counterflow Virtual Impactor. Aerosol Science and Technology, 2005, 39, 485-491.	1.5	4
416	Aerosol Properties Computed from Aircraft-Based Observations during the ACE-Asia Campaign: 1. Aerosol Size Distributions Retrieved from Optical Thickness Measurements. Aerosol Science and Technology, 2007, 41, 202-216.	1.5	4
417	Marine Boundary Layer Clouds Associated with Coastally Trapped Disturbances: Observations and Model Simulations. Journals of the Atmospheric Sciences, 2019, 76, 2963-2993.	0.6	4
418	CHEMISTRY OF OZONE IN THE URBAN AND REGIONAL ATMOSPHERE. Advanced Series in Physical Chemistry, 1995, , 34-57.	1.5	4
419	A Neural Network-Assisted Euler Integrator for Stiff Kinetics in Atmospheric Chemistry. Environmental Science & Technology, 2022, 56, 4676-4685.	4.6	4
420	Clouds and climate: Unravelling a key piece of global warming. AICHE Journal, 2000, 46, 226-228.	1.8	3
421	Diffusional transfer function for the scanning electrical mobility spectrometer (SEMS). Aerosol Science and Technology, 2020, 54, 1157-1168.	1.5	3
422	A computationally efficient model to represent the chemistry, thermodynamics, and microphysics of secondary organic aerosols (simpleSOM): model development and application to α-pinene SOA. Environmental Science Atmospheres, 2021, 1, 372-394.	0.9	3
423	Sensitivity analysis of nonlinear differentialâ€difference equations — application to control of a continuousâ€stirred tank reactor. Canadian Journal of Chemical Engineering, 1969, 47, 212-214.	0.9	2
424	Efficacy of a portable, moderate-resolution, fast-scanning differential mobility analyzer for ambient aerosol size distribution measurements. Atmospheric Measurement Techniques, 2021, 14, 4507-4516.	1.2	2
425	Wakes in stratified flow past a hot or cold two-dimensional body. Journal of Fluid Mechanics, 1976, 75, 233-256.	1.4	1
426	Analysis of multivariable control strategies on a heat conduction system. International Journal of Control, 1982, 36, 1-24.	1.2	1
427	Effect of the mechanism of gas-to-particle conversion on the evolution of aerosol size distributions. Geophysical Monograph Series, 1982, , 6-12.	0.1	1
428	Estimating the Variance in Solutions to the Aerosol Data Inversion Problem. Aerosol Science and Technology, 1991, 14, 348-357.	1.5	1
429	Reply to Comment of V. A. Shneidman. Journal of Materials Research, 1993, 8, 1191-1193.	1.2	1
430	Response to Comment on "Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene― Science, 2010, 327, 644-644.	6.0	1
431	Robust Controller Design for a Fixed-Bed Methanation Reactor. , 1986, , .		1
432	Environmental Reaction Engineering. ACS Symposium Series, 1978, , 162-192.	0.5	0

#	Article	IF	CITATIONS
433	Optimal estimators for distributed-parameter systems with time-averaged pointwise measurements. International Journal of Control, 1987, 45, 1963-1974.	1.2	0
434	Optimal estimators for time-averaged measurement systems. International Journal of Systems Science, 1988, 19, 573-581.	3.7	0
435	Ternary nucleation of H[sub 2]SO[sub 4], NH[sub 3] and H[sub 2]O. AIP Conference Proceedings, 2000, , ·	0.3	0
436	Aerosol-cloud interactions in global models of indirect aerosol radiative forcing. AIP Conference Proceedings, 2000, , .	0.3	0