## Lijie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7824077/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rational Control on Quantum Emitter Formation in Carbon-Doped Monolayer Hexagonal Boron<br>Nitride. ACS Applied Materials & Interfaces, 2022, 14, 3189-3198.                                                                     | 4.0  | 9         |
| 2  | 2D Ultrathin pâ€ŧype ZnTe with High Environmental Stability. Advanced Electronic Materials, 2022, 8, .                                                                                                                           | 2.6  | 9         |
| 3  | Band Alignment Engineering by Twist Angle and Composition Modulation for Heterobilayer. Small, 2022, 18, .                                                                                                                       | 5.2  | 2         |
| 4  | Strategies for Controlled Growth of Transition Metal Dichalcogenides by Chemical Vapor Deposition for Integrated Electronics. ACS Materials Au, 2022, 2, 665-685.                                                                | 2.6  | 16        |
| 5  | Electron beam lithography induced doping in multilayer MoTe2. Applied Surface Science, 2021, 540, 148276.                                                                                                                        | 3.1  | 9         |
| 6  | Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional<br>WS <sub>2</sub> /Bi <sub>2</sub> Se <sub>3</sub> Heterojunctions Based on Vapor Growth. ACS Applied<br>Materials & Interfaces, 2021, 13, 15518-15524. | 4.0  | 7         |
| 7  | A Universal Atomic Substitution Conversion Strategy Towards Synthesis of Large-Size Ultrathin<br>Nonlayered Two-Dimensional Materials. Nano-Micro Letters, 2021, 13, 165.                                                        | 14.4 | 12        |
| 8  | Visualizing Van der Waals Epitaxial Growth of 2D Heterostructures. Advanced Materials, 2021, 33, e2105079.                                                                                                                       | 11.1 | 24        |
| 9  | Large-Size Superlattices Synthesized by Sequential Sulfur Substitution-Induced Transformation of Metastable MoTe <sub>2</sub> . Chemistry of Materials, 2021, 33, 9760-9768.                                                     | 3.2  | 5         |
| 10 | Universal Precise Growth of 2D Transition-Metal Dichalcogenides in Vertical Direction. ACS Applied<br>Materials & Interfaces, 2020, 12, 35337-35344.                                                                             | 4.0  | 16        |
| 11 | CuFe2O4/MoS2 Mixed-Dimensional Heterostructures with Improved Gas Sensing Response. Nanoscale<br>Research Letters, 2020, 15, 32.                                                                                                 | 3.1  | 15        |
| 12 | Atomically Thin WSe <sub>2</sub> /CdSe Mixed-Dimensional van der Waals Heterostructures with<br>Enhanced Optoelectrical Properties. ACS Photonics, 2019, 6, 2067-2072.                                                           | 3.2  | 11        |
| 13 | Electrical control of spatial resolution in mixed-dimensional heterostructured photodetectors.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6586-6593.                         | 3.3  | 20        |
| 14 | Monolayer-ReS2 field effect transistor using monolayer-graphene as electrodes. Physica B: Condensed<br>Matter, 2019, 554, 35-39.                                                                                                 | 1.3  | 6         |
| 15 | Anisotropic Broadband Photoresponse of Layered Typeâ€l Weyl Semimetal MoTe <sub>2</sub> . Advanced<br>Materials, 2018, 30, e1707152.                                                                                             | 11.1 | 139       |
| 16 | Conversion of Multi-layered MoTe2 Transistor Between P-Type and N-Type and Their Use in Inverter.<br>Nanoscale Research Letters, 2018, 13, 291.                                                                                  | 3.1  | 30        |
| 17 | Temperature-dependent Photoluminescence of Silicon Nanocrystals Embedded in SiO2 Matrix.<br>Chemical Research in Chinese Universities, 2018, 34, 513-516.                                                                        | 1.3  | 0         |
| 18 | Carbonâ€Nanotubeâ€Confined Vertical Heterostructures with Asymmetric Contacts. Advanced Materials,<br>2017, 29, 1702942.                                                                                                         | 11.1 | 21        |

LIJIE ZHANG

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Pronounced Photovoltaic Response from Multi-layered MoTe2 Phototransistor with Asymmetric<br>Contact Form. Nanoscale Research Letters, 2017, 12, 603.                                                                       | 3.1 | 7         |
| 20 | Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2. Nature Communications, 2016, 7, 13552.                                                                     | 5.8 | 118       |
| 21 | Epitaxial growth of two-dimensional SnSe <sub>2</sub> /MoS <sub>2</sub> misfit heterostructures.<br>Journal of Materials Chemistry C, 2016, 4, 10215-10222.                                                                 | 2.7 | 33        |
| 22 | CuO/WO <sub>3</sub> Hybrid Nanocubes for Highâ€Responsivity and Fastâ€Recovery H <sub>2</sub> S<br>Sensors Operated at Low Temperature. Particle and Particle Systems Characterization, 2016, 33, 15-20.                    | 1.2 | 23        |
| 23 | Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2<br>monolayers. Nano Research, 2016, 9, 3772-3780.                                                                              | 5.8 | 56        |
| 24 | Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II<br>MoTe <sub>2</sub> /MoS <sub>2</sub> van der Waals Heterostructures. ACS Nano, 2016, 10, 3852-3858.                                          | 7.3 | 453       |
| 25 | Self-Induced Uniaxial Strain in MoS <sub>2</sub> Monolayers with Local van der Waals-Stacked<br>Interlayer Interactions. ACS Nano, 2015, 9, 2704-2710.                                                                      | 7.3 | 47        |
| 26 | Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission. Nano Research, 2015, 8, 743-750.                                                                                     | 5.8 | 52        |
| 27 | Distinguishing plasmonic absorption modes by virtue of inversed architectures with tunable atomic-layer-deposited spacer layer. Nanotechnology, 2014, 25, 504004.                                                           | 1.3 | 5         |
| 28 | Enhanced electrical and optoelectrical properties of cadmium selenide nanobelts by chlorine doping.<br>Micro and Nano Letters, 2014, 9, 55-59.                                                                              | 0.6 | 1         |
| 29 | Vapor-deposited amorphous metamaterials as visible near-perfect absorbers with random non-prefabricated metal nanoparticles. Scientific Reports, 2014, 4, 4850.                                                             | 1.6 | 40        |
| 30 | Application of three-dimensionally area-selective atomic layer deposition for selectively coating the vertical surfaces of standing nanopillars. Scientific Reports, 2014, 4, 4458.                                         | 1.6 | 28        |
| 31 | Atomic-Layer-Deposited Transparent Conductive Oxide for Enhancing Antireflection of Catalytically<br>Etched Silicon Nanowire Arrays. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 321-325.                    | 0.3 | 1         |
| 32 | Proton-Initiated Darkening and UV-Originated Re-Brightening Photoluminescence of Colloidal Quantum Dots. Journal of Nanoengineering and Nanomanufacturing, 2014, 4, 326-329.                                                | 0.3 | 0         |
| 33 | Radial sandwich hybrid nanorods by analogously inserting Au nanoparticles in ZnO nanorods. RSC<br>Advances, 2013, 3, 21256.                                                                                                 | 1.7 | 0         |
| 34 | Nanosphere@nanorod hybrid arrays generated on substrates by a one-pot process as low-reflecting surfaces. RSC Advances, 2013, 3, 21039.                                                                                     | 1.7 | 2         |
| 35 | Nondestructively decorating surface textured silicon with nanorod arrays for enhancing light<br>harvesting (Phys. Status Solidi A 12â^•2013). Physica Status Solidi (A) Applications and Materials Science,<br>2013, 210, . | 0.8 | 0         |
| 36 | Nondestructively decorating surface textured silicon with nanorod arrays for enhancing light harvesting. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2542-2549.                                | 0.8 | 6         |

Lijie Zhang

| #  | Article                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Near-perfect infrared absorption from dielectric multilayer of plasmonic aluminum-doped zinc oxide.<br>Applied Physics Letters, 2013, 102, . | 1.5 | 19        |
| 38 | Coherent Heterostructure Mesh Grown by Gap-Filling Epitaxial Chemical Vapor Deposition. Chemistry of Materials, 0, , .                       | 3.2 | 2         |