
Lea Sistonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7822949/publications.pdf Version: 2024-02-01

LEA SISTONEN

#	Article	IF	CITATIONS
1	Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS Journal, 2022, 289, 7710-7725.	4.7	11
2	Quantifying RNA synthesis at rate-limiting steps of transcription using nascent RNA-sequencing data. STAR Protocols, 2022, 3, 101036.	1.2	7
3	HSFs drive transcription of distinct genes and enhancers during oxidative stress and heat shock. Nucleic Acids Research, 2022, 50, 6102-6115.	14.5	17
4	Stress-induced transcriptional memory accelerates promoter-proximal pause release and decelerates termination over mitotic divisions. Molecular Cell, 2021, 81, 1715-1731.e6.	9.7	28
5	The 2021 FASEB Virtual Catalyst Conference on Extracellular and Organismal Proteostasis in Health and Disease, February 3â€4, 2021. FASEB Journal, 2021, 35, e21631.	0.5	1
6	Therapeutic Potential of Targeting the SUMO Pathway in Cancer. Cancers, 2021, 13, 4402.	3.7	25
7	Molecular Mechanisms of Heat Shock Factors in Cancer. Cells, 2020, 9, 1202.	4.1	33
8	Heat Shock Factor 2 Protects against Proteotoxicity by Maintaining Cell-Cell Adhesion. Cell Reports, 2020, 30, 583-597.e6.	6.4	33
9	Co-chaperones TIMP2 and AHA1 Competitively Regulate Extracellular HSP90:Client MMP2 Activity and Matrix Proteolysis. Cell Reports, 2019, 28, 1894-1906.e6.	6.4	50
10	New insights into transcriptional reprogramming during cellular stress. Journal of Cell Science, 2019, 132, .	2.0	36
11	Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harbor Perspectives in Biology, 2019, 11, a034066.	5.5	64
12	Sumoylation of Notch1 represses its target gene expression during cell stress. Cell Death and Differentiation, 2018, 25, 600-615.	11.2	20
13	Frizzled-8 integrates Wnt-11 and transforming growth factor-Î ² signaling in prostate cancer. Nature Communications, 2018, 9, 1747.	12.8	79
14	HSP90 inhibitors disrupt a transient HSP90-HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Scientific Reports, 2018, 8, 6976.	3.3	88
15	Increased HSF1 expression predicts shorter disease-specific survival of prostate cancer patients following radical prostatectomy. Oncotarget, 2018, 9, 31200-31213.	1.8	19
16	Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility. Cell Stress and Chaperones, 2017, 22, 717-728.	2.9	11
17	Transcriptional response to stress is pre-wired by promoter and enhancer architecture. Nature Communications, 2017, 8, 255.	12.8	136
18	Versatile Functions of Heat Shock Factors: It is Not All About Stress. Current Immunology Reviews, 2017, 13, .	1.2	7

LEA SISTONEN

#	Article	IF	CITATIONS
19	Effects of intrinsic aerobic capacity, aging and voluntary running on skeletal muscle sirtuins and heat shock proteins. Experimental Gerontology, 2016, 79, 46-54.	2.8	33
20	Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Nature Structural and Molecular Biology, 2016, 23, 147-154.	8.2	67
21	Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biology, 2015, 16, 153.	8.8	88
22	Cellular stress response cross talk maintains protein and energy homeostasis. EMBO Journal, 2015, 34, 267-269.	7.8	21
23	Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation. Molecular and Cellular Biology, 2015, 35, 2530-2540.	2.3	82
24	HSF1 at a glance. Journal of Cell Science, 2014, 127, 261-266.	2.0	248
25	Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. Journal of Cell Biology, 2014, 206, 735-749.	5.2	41
26	Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3388-97.	7.1	134
27	Regulation of H <scp>SF</scp> 1 Function in the Heat Stress Response: Implications in Aging and Disease. Annual Review of Biochemistry, 2011, 80, 1089-1115.	11.1	644
28	Regulation of the members of the mammalian heat shock factor family. FEBS Journal, 2010, 277, 4126-4139.	4.7	73
29	Heat shock factors: integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology, 2010, 11, 545-555.	37.0	1,198
30	miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development (Cambridge), 2010, 137, 3177-3184.	2.5	107
31	Anaphase-Promoting Complex/Cyclosome Participates in the Acute Response to Protein-Damaging Stress. Molecular and Cellular Biology, 2010, 30, 5608-5620.	2.3	36
32	Heat Shock Transcription Factor 1 Localizes to Sex Chromatin during Meiotic Repression. Journal of Biological Chemistry, 2010, 285, 34469-34476.	3.4	62
33	Stress-Inducible Regulation of Heat Shock Factor 1 by the Deacetylase SIRT1. Science, 2009, 323, 1063-1066.	12.6	630
34	Heterotrimerization of Heat-Shock Factors 1 and 2 Provides a Transcriptional Switch in Response to Distinct Stimuli. Molecular Biology of the Cell, 2009, 20, 1340-1347.	2.1	139
35	Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proceedings of the United States of America, 2008, 105, 11224-11229.	7.1	66
36	Heat Shock Factor 2 (HSF2) Contributes to Inducible Expression of hsp Genes through Interplay with HSF1. Journal of Biological Chemistry, 2007, 282, 7077-7086.	3.4	192

LEA SISTONEN

#	Article	IF	CITATIONS
37	Heat Shock Factor 1 as a Coordinator of Stress and Developmental Pathways. , 2007, 594, 78-88.		158
38	Role of heat-shock factor 2 in cerebral cortex formation and as a regulatorof p35 expression. Genes and Development, 2006, 20, 836-847.	5.9	85
39	Inhibition of DNA Binding by Differential Sumoylation of Heat Shock Factors. Molecular and Cellular Biology, 2006, 26, 955-964.	2.3	100
40	PDSM, a motif for phosphorylation-dependent SUMO modification. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 45-50.	7.1	433
41	Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. Journal of Cell Science, 2003, 116, 3557-3570.	2.0	105
42	Phosphorylation of Serine 303 Is a Prerequisite for the Stress-Inducible SUMO Modification of Heat Shock Factor 1. Molecular and Cellular Biology, 2003, 23, 2953-2968.	2.3	282
43	Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends in Biochemical Sciences, 2002, 27, 619-627.	7.5	284
44	Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO Journal, 2002, 21, 2591-2601.	7.8	164
45	Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB Journal, 2001, 15, 1118-1131.	0.5	885
46	Activation of the MKK4-JNK pathway during erythroid differentiation of K562 cells is inhibited by the heat shock factor 2-1² isoform. FEBS Letters, 2001, 505, 168-172.	2.8	8
47	Differential Induction of Hsp70-encoding Genes in Human Hematopoietic Cells. Journal of Biological Chemistry, 2001, 276, 31713-31719.	3.4	24
48	Disruption of Heat Shock Factor 1 Reveals an Essential Role in the Ubiquitin Proteolytic Pathway. Molecular and Cellular Biology, 2000, 20, 2670-2675.	2.3	114
49	Protein synthesis is required for stabilization of hsp70 mRNA upon exposure to both hydrostatic pressurization and elevated temperature. FEBS Letters, 2000, 475, 283-286.	2.8	24
50	Formation of nuclear HSF1 granules varies depending on stress stimuli. Cell Stress and Chaperones, 2000, 5, 219.	2.9	55
51	Thermotolerance and cell death are distinct cellular responses to stress: dependence on heat shock proteins. FEBS Letters, 1999, 461, 306-310.	2.8	115
52	Differentiation lineageâ€specific expression of human heat shock transcription factor 2. FASEB Journal, 1999, 13, 1089-1098.	0.5	26
53	Stage-Specific Expression and Cellular Localization of the Heat Shock Factor 2 Isoforms in the Rat Seminiferous Epithelium. Experimental Cell Research, 1998, 240, 16-27.	2.6	64
54	Heat Shock Response - Pathophysiological Implications. Annals of Medicine, 1997, 29, 73-78.	3.8	86