
Maria C Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7822585/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. Journal of Hazardous Materials, 2009, 166, 706-713.	6.5	129
2	Oxidative leaching process with cupric ion in hydrochloric acid media for recovery of Pd and Rh from spent catalytic converters. Journal of Hazardous Materials, 2014, 278, 82-90.	6.5	77
3	Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere, 2009, 75, 831-836.	4.2	65
4	Bioremediation of Acid Mine Drainage Using Acidic Soil and Organic Wastes for Promoting Sulphate-Reducing Bacteria Activity on a Column Reactor. Water, Air, and Soil Pollution, 2005, 165, 325-345.	1.1	61
5	Treatment of Acid Mine Drainage by Sulphate-reducing Bacteria Using Low Cost Matrices. Water, Air, and Soil Pollution, 2008, 189, 149-162.	1.1	61
6	Biologically-induced precipitation of sphalerite–wurtzite nanoparticles by sulfate-reducing bacteria: Implications for acid mine drainage treatment. Science of the Total Environment, 2012, 423, 176-184.	3.9	57
7	Characterization of a natural and an electro-oxidized arsenopyrite: a study on electrochemical and X-ray photoelectron spectroscopy. International Journal of Mineral Processing, 2002, 65, 83-108.	2.6	48
8	Mechanism of uranium (VI) removal by two anaerobic bacterial communities. Journal of Hazardous Materials, 2010, 184, 89-96.	6.5	48
9	Recovery of Platinum and Palladium from Chloride Solutions by a Thiodiglycolamide Derivative. Solvent Extraction and Ion Exchange, 2014, 32, 78-94.	0.8	45
10	Anaerobic bio-removal of uranium (VI) and chromium (VI): Comparison of microbial community structure. Journal of Hazardous Materials, 2010, 176, 1065-1072.	6.5	42
11	Performance and bacterial community shifts during bioremediation of acid mine drainage from two Portuguese mines. International Biodeterioration and Biodegradation, 2011, 65, 972-981.	1.9	41
12	Putative Role of Flavobacterium, Dokdonella and Methylophilus Strains in Paracetamol Biodegradation. Water, Air, and Soil Pollution, 2018, 229, 1.	1.1	39
13	Biological sulphate reduction using food industry wastes as carbon sources. Biodegradation, 2009, 20, 559-567.	1.5	38
14	Clostridia Initiate Heavy Metal Bioremoval in Mixed Sulfidogenic Cultures. Environmental Science & Technology, 2014, 48, 3378-3385.	4.6	37
15	Solvent Extraction of Iron(III) from Hydrochloric Acid Solutions Using N,N′â€Dimethylâ€N,N′â€diphenylmalonamide and N,N′â€Dimethylâ€N,N′â€diphenyltetradecylma Extraction and Ion Exchange, 2003, 21, 653-686.	lonantide. S	olvent
16	Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Minerals Engineering, 2015, 75, 85-93.	1.8	33
17	Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis. Journal of the Iranian Chemical Society, 2020, 17, 2013-2031.	1.2	32
18	A review of plant metabolites with metal interaction capacity: a green approach for industrial applications. BioMetals, 2021, 34, 761-793.	1.8	30

MARIA C COSTA

#	Article	IF	CITATIONS
19	Bromate removal by anaerobic bacterial community: Mechanism and phylogenetic characterization. Journal of Hazardous Materials, 2011, 197, 237-243.	6.5	29
20	Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy, 2012, 117-118, 57-63.	1.8	29
21	Liquid-Liquid Extraction of Platinum from Chloride Media by <i>N,N</i> ′-Dimethyl- <i>N,N</i> ′-Dicyclohexyltetradecylmalonamide. Solvent Extraction and Ion Exchange, 2013, 31, 12-23.	0.8	29
22	Production of irrigation water from bioremediation of acid mine drainage: comparing the performance of two representative systems. Journal of Cleaner Production, 2010, 18, 248-253.	4.6	26
23	The Solvent Extraction Performance of <i>N,N'</i> -Dimethyl- <i>N,N'</i> -Dibutylmalonamide Towards Platinum and Palladium in Chloride Media. Separation Science and Technology, 2014, 49, 966-973.	1.3	26
24	Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site. Science of the Total Environment, 2010, 408, 2621-2628.	3.9	24
25	A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance. Journal of Hazardous Materials, 2011, 187, 362-370.	6.5	24
26	Solvent Extraction of Iron(III) from Acidic Chloride Media UsingN,N′â€Dimethylâ€N,N′â€dibutylmalonamide. Separation Science and Technology, 2005, 39, 3573-3599.	1.3	23
27	Growth, photosynthetic pigments, phenolic content and biological activities of Foeniculum vulgare Mill., Anethum graveolens L. and Pimpinella anisum L. (Apiaceae) in response to zinc. Industrial Crops and Products, 2017, 109, 627-636.	2.5	23
28	Marble stone processing powder residue as chemical adjuvant for the biologic treatment of acid mine drainage. Process Biochemistry, 2009, 44, 477-480.	1.8	22
29	Biological synthesis of nanosized sulfide semiconductors: current status and future prospects. Applied Microbiology and Biotechnology, 2016, 100, 8283-8302.	1.7	21
30	Green synthesis of covellite nanocrystals using biologically generated sulfide: Potential for bioremediation systems. Journal of Environmental Management, 2013, 128, 226-232.	3.8	20
31	N , N ′-tetrasubstituted succinamides as new molecules for liquid–liquid extraction of Pt(IV) from chloride media. Separation and Purification Technology, 2016, 158, 409-416.	3.9	20
32	Application of N,N′-tetrasubstituted malonamides to the recovery of iron(III) from chloride solutions. Hydrometallurgy, 2005, 77, 103-108.	1.8	18
33	The Solvent Extraction of Iron(III) from Chloride Solutions by <i>N</i> , <i>N</i> ′â€Tetrasubstituted Malonamides: Structureâ€Activity Relationships. Solvent Extraction and Ion Exchange, 2007, 25, 463-484.	0.8	18
34	Dynamics of bacterial community in up-flow anaerobic packed bed system for acid mine drainage treatment using wine wastes as carbon source. International Biodeterioration and Biodegradation, 2011, 65, 78-84.	1.9	18
35	N,N′-dimethyl-N,N′-dicyclohexylsuccinamide: A novel molecule for the separation and recovery of Pd(II) by liquid-liquid extraction. Separation and Purification Technology, 2018, 201, 96-105.	3.9	18
36	Electro-oxidation as a pre-treatment for gold recovery. Hydrometallurgy, 1996, 40, 99-110.	1.8	17

MARIA C COSTA

#	Article	IF	CITATIONS
37	Profiling of antioxidant potential and phytoconstituents of Plantago coronopus. Brazilian Journal of Biology, 2017, 77, 632-641.	0.4	17
38	Biodegradation of Paracetamol by Some Gram-Positive Bacterial Isolates. Current Microbiology, 2021, 78, 2774-2786.	1.0	17
39	Anaerobic biodegradation of fluoxetine using a high-performance bacterial community. Anaerobe, 2021, 68, 102356.	1.0	15
40	Separation and recovery of Pd and Fe as nanosized metal sulphides by combining solvent extraction with biological strategies based on the use of sulphate-reducing bacteria. Separation and Purification Technology, 2019, 212, 747-756.	3.9	14
41	Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl ₂ media. Environmental Technology (United Kingdom), 2020, 41, 2293-2304.	1.2	14
42	Aluminum and sulphate removal by a highly Al-resistant dissimilatory sulphate-reducing bacteria community. Biodegradation, 2012, 23, 693-703.	1.5	13
43	A meta-taxonomic investigation of the prokaryotic diversity of water bodies impacted by acid mine drainage from the São Domingos mine in southern Portugal. Extremophiles, 2019, 23, 821-834.	0.9	12
44	Palladium recovery as nanoparticles by an anaerobic bacterial community. Journal of Chemical Technology and Biotechnology, 2013, 88, 2039-2045.	1.6	10
45	A bridge between liquid–liquid extraction and the use of bacterial communities for palladium and platinum recovery as nanosized metal sulphides. Hydrometallurgy, 2016, 163, 40-48.	1.8	10
46	Zantaz honey "monofloralityâ€: Chemometric applied to the routinely assessed parameters. LWT - Food Science and Technology, 2019, 106, 29-36.	2.5	9
47	Prokaryotic diversity in stream sediments affected by acid mine drainage. Extremophiles, 2020, 24, 809-819.	0.9	9
48	Isolation and characterization of bacteria from activated sludge capable of degrading 17α-ethinylestradiol, a contaminant of high environmental concern. Microbiology (United Kingdom), 2021, 167, .	0.7	9
49	Biotechnologically obtained nanocomposites: A practical application for photodegradation of Safranin-T under UV-Vis and solar light. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 996-1010.	0.9	8
50	Recovery of gold(0) nanoparticles from aqueous solutions using effluents from a bioremediation process. RSC Advances, 2016, 6, 112784-112794.	1.7	8
51	Design of remediation pilot plants for the treatment of industrial metal-bearing effluents (BIOMETAL) Tj ETQq1	1 0.78431	4 rgBT /Over
52	Feasibility of Co-Treating Olive Mill Wastewater and Acid Mine Drainage. Mine Water and the Environment, 2020, 39, 859-880.	0.9	7
53	An autochthonous aerobic bacterial community and its cultivable isolates capable of degrading fluoxetine. Journal of Chemical Technology and Biotechnology, 2021, 96, 2813-2826.	1.6	7
54	A New Application of Solvent Extraction to Separate Copper from Extreme Acid Mine Drainage Producing Solutions for Electrochemical and Biological Recovery Processes. Mine Water and the Environment, 2022, 41, 387-401.	0.9	6

MARIA C COSTA

#	Article	IF	CITATIONS
55	Performance and Bacterial Community Shifts During Phosphogypsum Biotransformation. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	5
56	Potential of industrial by-products and wastes from the Iberian Peninsula as carbon sources for sulphate-reducing bacteria. International Journal of Environmental Science and Technology, 2019, 16, 4719-4738.	1.8	4
57	Insights into Ionizing-Radiation-Resistant Bacteria S-Layer Proteins and Nanobiotechnology for Bioremediation of Hazardous and Radioactive Waste. , 2016, , .		2
58	Characterization of a bacterial consortium with potential for bioremediation of effluents. New Biotechnology, 2009, 25, S95-S96.	2.4	1
59	Biometal Demonstration Plant for the Biological Rehabilitation of Metal Bearing-Wastewaters (Biometal Demo). Advanced Materials Research, 2015, 1130, 535-538.	0.3	0
60	Application of urea–agarose gel electrophoresis to select non-redundant 16S rRNAs for taxonomic studies: palladium(II) removal bacteria. Applied Microbiology and Biotechnology, 2016, 100, 2721-2735.	1.7	0
61	Biometal Demonstration Plant for the Biological Rehabilitation of Metal Bearing-Wastewaters. Impact, 2017, 2017, 55-57.	0.0	0