
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7822396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How trees thrive in a dry climate: diurnal and seasonal hydrology and water relations in a riparian cottonwood grove. Tree Physiology, 2022, 42, 99-113.	1.4	7
2	Riparian Cottonwood Trees and Adjacent River Sediments Have Different Microbial Communities and Produce Methane With Contrasting Carbon Isotope Compositions. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	4
3	Mountain Rivers: A Global Overview of River Channel Forms, With a Focus on Braided Rivers. , 2022, , 65-77.		1
4	Ecological impacts of shortening fire return intervals on boreal peatlands and transition zones using integrated in situ field sampling and lidar approaches. Ecohydrology, 2022, 15, .	1.1	4
5	Riparian Vegetation of Gravel-bed Rivers—A Global Review. , 2022, , .		2
6	Multidecadal Trends in Organic Carbon Flux Through a Grassland River Network Shaped by Human Controls and Climatic Cycles. Geophysical Research Letters, 2022, 49, .	1.5	4
7	Thirsty trees: even with continuous river flow, riparian cottonwoods are constrained by water availability. Trees - Structure and Function, 2022, 36, 1247-1260.	0.9	5
8	Productivity of riparian <i>Populus</i> forests: Satellite assessment along a prairie river with an environmental flow regime. Ecosphere, 2022, 13, .	1.0	4
9	Multiple processes contribute to methane emission in a riparian cottonwood forest ecosystem. New Phytologist, 2021, 229, 1970-1982.	3.5	29
10	Floodplain forest dynamics: Halfâ€century floods enable pulses of geomorphic disturbance and cottonwood colonization along a prairie river. River Research and Applications, 2021, 37, 64-77.	0.7	6
11	Biomic river restoration: A new focus for river management. River Research and Applications, 2020, 36, 3-12.	0.7	83
12	Cottonwood Seed Dispersal Phenology across North America and Worldwide: Tracking â€~Summer Snow' through an Internet Search. Wetlands, 2020, 40, 1935-1947.	0.7	2
13	Ecological Interfaces between Land and Flowing Water: Themes and Trends in Riparian Research and Management. Wetlands, 2020, 40, 1801-1811.	0.7	12
14	Flows for floodplain forests: Conversion from an intermittent to continuous flow regime enabled riparian woodland development along a prairie river. River Research and Applications, 2020, 36, 2051-2062.	0.7	4
15	Evaluation of temporal consistency of snow depth drivers of a Rocky Mountain watershed in southern Alberta. Hydrological Processes, 2020, 34, 4996-5012.	1.1	7
16	Considering multiple anthropogenic threats in the context of natural variability: Ecological processes in a regulated riverine ecosystem. Ecohydrology, 2020, 13, e2217.	1.1	10
17	Gibberellins and Heterosis in Crops and Trees: An Integrative Review and Preliminary Study with Brassica. Plants, 2020, 9, 139.	1.6	1
18	Prospective impacts of oil spills on floodplain vegetation: Both crude oil and diluted bitumen increase foliar temperatures, senescence and abscission in three cottonwood (Populus) species. PLoS ONE, 2020, 15, e0230630.	1.1	2

#	Article	IF	CITATIONS
19	Alternate reproductive strategies of Populus nigra influence diversity, structure and successional processes within riparian woodlands along the Allier River, France. Journal of Hydro-Environment Research, 2020, 30, 100-108.	1.0	7
20	Using stable isotopes to quantify water sources for trees and shrubs in a riparian cottonwood ecosystem in flood and drought years. Hydrological Processes, 2019, 33, 3070-3083.	1.1	23
21	Camo-maps: An efficient method to assess and project riparian vegetation colonization after a major river flood. Ecological Engineering, 2019, 141, 105610.	1.6	6
22	A Lightweight Leddar Optical Fusion Scanning System (FSS) for Canopy Foliage Monitoring. Sensors, 2019, 19, 3943.	2.1	3
23	Springs ecosystems: vulnerable ecological islands where environmental conditions, life history traits, and human disturbance facilitate non-native plant invasions. Biological Invasions, 2019, 21, 2963-2981.	1.2	6
24	Controls on ecosystem water-use and water-use efficiency: Insights from a comparison between grassland and riparian forest in the northern Great Plains. Agricultural and Forest Meteorology, 2019, 271, 22-32.	1.9	20
25	A prescription for drug-free rivers: uptake of pharmaceuticals by a widespread streamside willow. Environmental Management, 2019, 63, 136-147.	1.2	5
26	Heterosis in poplar involves phenotypic stability: cottonwood hybrids outperform their parental species at suboptimal temperatures. Tree Physiology, 2018, 38, 789-800.	1.4	45
27	The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation. Environmental Management, 2018, 61, 650-660.	1.2	3
28	Functional flows: an environmental flow regime benefits riparian cottonwoods along the Waterton River, Alberta. Restoration Ecology, 2018, 26, 921-932.	1.4	16
29	Wetland hydroperiod classification in the western prairies using multitemporal synthetic aperture radar. Hydrological Processes, 2018, 32, 1476-1490.	1.1	26
30	Bringing twentieth-century water projects into the twenty-first century: The case for revisiting dam operations in Alberta. Canadian Water Resources Journal, 2018, 43, 335-346.	0.5	3
31	Hydroclimatic drivers of the growth of riparian cottonwoods at the prairie margin: River flows, river regulation and the Pacific Decadal Oscillation. Dendrochronologia, 2018, 51, 82-91.	1.0	11
32	Distributed Plant Hydraulic and Hydrological Modeling to Understand the Susceptibility of Riparian Woodland Trees to Droughtâ€Induced Mortality. Water Resources Research, 2018, 54, 4901-4915.	1.7	43
33	Climate change and hydrology at the prairie margin: <scp>H</scp> istoric and prospective future flows of Canada's <scp>R</scp> ed <scp>D</scp> eer and other <scp>R</scp> ocky <scp>M</scp> ountain rivers. Hydrological Processes, 2018, 32, 2669-2684.	1.1	8
34	Time and Intensity Weighted Indices of Fluvial Processes: a Case Study from the Kootenai River, USA. River Research and Applications, 2017, 33, 224-232.	0.7	7
35	River regulation and riparian woodlands: Cottonwood conservation with an environmental flow regime along the Waterton River, Alberta. River Research and Applications, 2017, 33, 1088-1097.	0.7	10
36	Growth of riparian cottonwoods: heterosis in some intersectional Populus hybrids and clonal expansion of females. Trees - Structure and Function, 2017, 31, 1069-1081.	0.9	8

#	Article	IF	CITATIONS
37	Increasing discharge from the Mackenzie River system to the Arctic Ocean. Hydrological Processes, 2017, 31, 150-160.	1.1	50
38	Water use in a riparian cottonwood ecosystem: Eddy covariance measurements and scaling along a river corridor. Agricultural and Forest Meteorology, 2017, 232, 332-348.	1.9	28
39	Bud phenology and growth are subject to divergent selection across a latitudinal gradient in <i>Populus angustifolia</i> and impact adaptation across the distributional range and associated arthropods. Ecology and Evolution, 2016, 6, 4565-4581.	0.8	61
40	A Twofold Strategy for Riparian Restoration: Combining a Functional Flow Regime and Direct Seeding to Reâ€establish Cottonwoods. River Research and Applications, 2016, 32, 836-844.	0.7	16
41	Increasing River Flow Expands Riparian Habitat: Influences of Flow Augmentation on Channel Form, Riparian Vegetation and Birds Along the Little Bow River, Alberta. River Research and Applications, 2016, 32, 1687-1697.	0.7	9
42	Flood moderation: Declining peak flows along some Rocky Mountain rivers and the underlying mechanism. Journal of Hydrology, 2016, 536, 174-182.	2.3	27
43	Gravel-bed river floodplains are the ecological nexus of glaciated mountain landscapes. Science Advances, 2016, 2, e1600026.	4.7	146
44	Compound Influences of River Damming and Beavers on Riparian Cottonwoods: A Comparative Study Along the Lardeau and Duncan Rivers, British Columbia, Canada. Wetlands, 2015, 35, 945-954.	0.7	6
45	Ecohydrology and stewardship of Alberta springs ecosystems. Ecohydrology, 2015, 8, 896-910.	1.1	14
46	Restoring functional riparian ecosystems: concepts and applications. Ecohydrology, 2015, 8, 747-752.	1.1	14
47	Biological bank protection: trees are more effective than grasses at resisting erosion from major river floods. Ecohydrology, 2015, 8, 772-779.	1.1	15
48	Flood flow attenuation diminishes cottonwood colonization sites: an experimental test along the Boise River, USA. Ecohydrology, 2015, 8, 825-837.	1.1	13
49	Centuryâ€long records reveal slight, ecoregionâ€localized changes in Athabasca River flows. Hydrological Processes, 2015, 29, 805-816.	1.1	16
50	Biological effects and toxicity of diluted bitumen and its constituents in freshwater systems. Journal of Applied Toxicology, 2015, 35, 1219-1227.	1.4	64
51	Recombinant DNA modification of gibberellin metabolism alters growth rate and biomass allocation in Populus. Tree Genetics and Genomes, 2015, 11, 1.	0.6	10
52	Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity, 2015, 114, 387-396.	1.2	27
53	Higher photosynthetic capacity from higher latitude: foliar characteristics and gas exchange of southern, central and northern populations of <i>Populus angustifolia</i> . Tree Physiology, 2015, 35, 936-948.	1.4	42
54	Hydration as a possible colonization cue: Rain may promote seed release from black cottonwood trees. Forest Ecology and Management, 2015, 350, 22-29.	1.4	10

#	Article	IF	CITATIONS
55	Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands. Journal of Environmental Management, 2015, 161, 72-82.	3.8	59
56	Riparian responses to reduced flood flows: comparing and contrasting narrowleaf and broadleaf cottonwoods. Hydrological Sciences Journal, 2014, 59, 605-617.	1.2	14
57	Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers. Journal of Environmental Management, 2014, 145, 277-288.	3.8	52
58	Hydrologic linkages between a climate oscillation, river flows, growth, and wood Δ ¹³ C of male and female cottonwood trees. Plant, Cell and Environment, 2013, 36, 984-993.	2.8	39
59	Green Revolution Trees: Semidwarfism Transgenes Modify Gibberellins, Promote Root Growth, Enhance Morphological Diversity, and Reduce Competitiveness in Hybrid Poplar Â. Plant Physiology, 2012, 160, 1130-1144.	2.3	44
60	Resizing a River: A Downscaled, Seasonal Flow Regime Promotes Riparian Restoration. Restoration Ecology, 2011, 19, 351-359.	1.4	33
61	Elevated sensitivity: riparian vegetation in upper mountain zones is especially vulnerable to livestock grazing. Applied Vegetation Science, 2011, 14, 596-606.	0.9	12
62	Sand and sandbar willow: a feedback loop amplifies environmental sensitivity at the riparian interface. Oecologia, 2011, 165, 31-40.	0.9	37
63	Root architecture of riparian trees: river cut-banks provide natural hydraulic excavation, revealing that cottonwoods are facultative phreatophytes. Trees - Structure and Function, 2011, 25, 907-917.	0.9	55
64	Responses of obligate versus facultative riparian shrubs following river damming. River Research and Applications, 2010, 26, 102-117.	0.7	12
65	Relaxing the Principle of Prior Appropriation: Stored Water and Sharing the Shortage in Alberta, Canada. Water Resources Management, 2010, 24, 1605-1620.	1.9	20
66	Effects of flooding on leaf development, transpiration, and photosynthesis in narrowleaf cottonwood, a willow-like poplar. Photosynthesis Research, 2010, 104, 31-39.	1.6	47
67	Climate change and future flows of Rocky Mountain rivers: converging forecasts from empirical trend projection and downâ€scaled global circulation modelling. Hydrological Processes, 2010, 24, 3864-3877.	1.1	41
68	Streamside trees: responses of male, female and hybrid cottonwoods to flooding. Tree Physiology, 2010, 30, 1479-1488.	1.4	26
69	Favorable fragmentation: river reservoirs can impede downstream expansion of riparian weeds. Ecological Applications, 2010, 20, 1664-1677.	1.8	47
70	Growth and Physiology. , 2010, , 39-63.		24
71	Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon. Environmental Management, 2008, 41, 267-281.	1.2	76
72	Declining summer flows of Rocky Mountain rivers: Changing seasonal hydrology and probable impacts on floodplain forests. Journal of Hydrology, 2008, 349, 397-410.	2.3	204

#	Article	IF	CITATIONS
73	Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiology, 2008, 28, 1037-1048.	1.4	72
74	Comment on "The St. Mary and Milk Rivers: The 1921 Order Revisited" by R. Halliday and G. Faveri, Canadian Water Resources Journal, 32(1): 75-92. Canadian Water Resources Journal, 2007, 32, 331-334.	0.5	0
75	Trees of the people: the growing science of poplars in Canada and worldwideThis commentary is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1103-1110.	1.2	30
76	Floods, fire, and ice: disturbance ecology of riparian cottonwoodsThe review is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1019-1032.	1.2	65
77	Instream flows and the decline of riparian cottonwoods along the Yakima River, Washington, USA. River Research and Applications, 2007, 23, 247-267.	0.7	80
78	Consistent growth of black cottonwoods despite temperature variation across elevational ecoregions in the Rocky Mountains. Trees - Structure and Function, 2007, 21, 161-169.	0.9	21
79	Localized temperature adaptation of cottonwoods from elevational ecoregions in the Rocky Mountains. Trees - Structure and Function, 2007, 21, 171-180.	0.9	13
80	Stomatal characteristics of riparian poplar species in a semi-arid environment. Tree Physiology, 2006, 26, 211-218.	1.4	124
81	Instream flows for recreation are closely correlated with mean discharge for rivers of western North America. River Research and Applications, 2006, 22, 91-108.	0.7	7
82	Effective disturbance: Seedling safe sites and patch recruitment of riparian cottonwoods after a major flood of a mountain river. Wetlands, 2006, 26, 965-980.	0.7	76
83	Growth of riparian cottonwoods: a developmental pattern and the influence of geomorphic context. Trees - Structure and Function, 2006, 20, 210-218.	0.9	29
84	Transgenic modification of gai or rgl1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus. Planta, 2006, 224, 288-299.	1.6	130
85	Unusual disturbance: forest change following a catastrophic debris flow in the Canadian Rocky Mountains. Canadian Journal of Forest Research, 2006, 36, 2204-2215.	0.8	31
86	Managing river flows to restore floodplain forests. Frontiers in Ecology and the Environment, 2005, 3, 193-201.	1.9	282
87	Twentieth-century decline in streamflows from the hydrographic apex of North America. Journal of Hydrology, 2005, 306, 215-233.	2.3	142
88	Phytohormones and shoot growth in a three-generation hybrid poplar family. Tree Physiology, 2004, 24, 217-224.	1.4	14
89	Differing influences of natural and artificial disturbances on riparian cottonwoods from prairie to mountain ecoregions in Alberta, Canada. Journal of Biogeography, 2004, 31, 435-450.	1.4	39
90	Allocation of River Flows for Restoration of Floodplain Forest Ecosystems: A Review of Approaches and Their Applicability in Europe. Environmental Management, 2003, 32, 12-33.	1.2	152

#	Article	IF	CITATIONS
91	Drought stress and recovery of riparian cottonwoods due to water table alteration along Willow Creek, Alberta. Trees - Structure and Function, 2003, 17, 351-358.	0.9	93
92	A comparison of methods for evaluating instream flow needs for recreation along rivers in southern Alberta, Canada. River Research and Applications, 2003, 19, 123-135.	0.7	4
93	Branch propagation, not cladoptosis, permits dispersive, clonal reproduction of riparian cottonwoods. Forest Ecology and Management, 2003, 186, 227-242.	1.4	49
94	Big old cottonwoods. Canadian Journal of Botany, 2003, 81, 764-767.	1.2	12
95	Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 2003, 23, 1113-1124.	1.4	239
96	Flows for Floodplain Forests: A Successful Riparian Restoration. BioScience, 2003, 53, 647.	2.2	189
97	Activation Tagging of a Dominant Gibberellin Catabolism Gene (GA 2-oxidase) from Poplar That Regulates Tree Stature. Plant Physiology, 2003, 132, 1283-1291.	2.3	244
98	Gibberellins in shoots and developing capsules of Populus species. Phytochemistry, 2002, 59, 679-687.	1.4	19
99	Comparative tolerances of riparian willows and cottonwoods to water-table decline. Wetlands, 2002, 22, 338-346.	0.7	153
100	Environmental influences on seedling growth of cottonwood species following a major flood. Forest Ecology and Management, 2001, 144, 75-89.	1.4	53
101	INUNDATION TOLERANCES OF RIPARIAN WILLOWS AND COTTONWOODS. Journal of the American Water Resources Association, 2001, 37, 1709-1720.	1.0	74
102	Correlation of Endogenous Gibberellic Acid with Initiation of Mango Shoot Growth. Journal of Plant Growth Regulation, 2000, 19, 445-452.	2.8	16
103	Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood. Tree Physiology, 2000, 20, 831-836.	1.4	30
104	Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta, 1999, 207, 505-511.	1.6	49
105	Patterns of clonal occurrence in a mature cottonwood grove along the Oldman River, Alberta. Canadian Journal of Botany, 1999, 77, 1095-1105.	1.2	21
106	The discrimination of cottonwood clones in a mature grove along the Oldman River in southern Alberta. Canadian Journal of Botany, 1999, 77, 1084-1094.	1.2	8
107	Fire induces clonal sprouting of riparian cottonwoods. Canadian Journal of Botany, 1999, 77, 1604-1616.	1.2	23
108	The discrimination of cottonwood clones in a mature grove along the Oldman River in southern Alberta. Canadian Journal of Botany, 1999, 77, 1084-1094.	1.2	32

#	Article	IF	CITATIONS
109	Patterns of clonal occurrence in a mature cottonwood grove along the Oldman River, Alberta. Canadian Journal of Botany, 1999, 77, 1095-1105.	1.2	52
110	Branch growth of riparian cottonwoods: a hydrologically sensitive dendrochronological tool. Trees - Structure and Function, 1998, 12, 215.	0.9	41
111	Initial cottonwood seedling recruitment following the flood of the century of the Oldman River, Alberta, Canada. Wetlands, 1998, 18, 557-570.	0.7	120
112	Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands, 1998, 18, 634-645.	0.7	571
113	The responses of three riparian cottonwood species to water table decline. Forest Ecology and Management, 1998, 110, 77-87.	1.4	89
114	Intersectional cottonwood hybrids are particularly susceptible to the poplar bud gall mite. Canadian Journal of Botany, 1997, 75, 1349-1355.	1.2	22
115	Heterosis and the metabolism of gibberellin A20 in sorghum. Plant Growth Regulation, 1995, 16, 271-278.	1.8	10
116	Instream flows and the decline of riparian cottonwoods along the St. Mary River, Alberta. Canadian Journal of Botany, 1995, 73, 1250-1260.	1.2	135

11

#	Article	IF	CITATIONS
127	Hormonal control of lipase activity in oilseed rape germinants. Physiologia Plantarum, 1993, 89, 476-482.	2.6	3
128	Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa. Plant Physiology, 1992, 100, 1442-1447.	2.3	131
129	Gibberellins and the Legume- <i>Rhizobium</i> Symbiosis. Plant Physiology, 1992, 98, 221-224.	2.3	36
130	Response of a hybrid poplar to water table decline in different substrates. Forest Ecology and Management, 1992, 54, 141-156.	1.4	110
131	Azospirillum brasilense produces gibberellin in pure culture on chemically-defined medium and in co-culture on straw. Soil Biology and Biochemistry, 1992, 24, 1061-1064.	4.2	98
132	Rhizobial-induced increase in internode length and identification of endogenous GAs of cowpea (Vigna unguiculata [L.] Walp) stems and nodules. Journal of Plant Growth Regulation, 1992, 11, 155-164.	2.8	4
133	Gibberellins and Heterosis in Sorghum. Crop Science, 1992, 32, 713-718.	0.8	10
134	Bolting and floral induction in annual and cold-requiring biennial Brassica spp.: effects of photoperiod and exogenous gibberellin. Current Plant Science and Biotechnology in Agriculture, 1992, , 371-379.	0.0	4
135	Interrelationships of poplars in a hybrid swarm as studied by gas chromatography – mass spectrometry. Canadian Journal of Botany, 1991, 69, 203-208.	1.2	25
136	Dwarf mutants ofBrassica: Responses to applied gibberellins and gibberellin content. Journal of Plant Growth Regulation, 1991, 10, 121-127.	2.8	27
137	A device for studying the influence of declining water table on poplar growth and survival. Tree Physiology, 1991, 8, 305-314.	1.4	95
138	Growth and development of Brassica genotypes differing in endogenous gibberellin content. I. Leaf and reproductive development. Physiologia Plantarum, 1990, 79, 673-678.	2.6	25
139	Growth and development of Brassica genotypes differing in endogenous gibberellin content. II. Gibberellin content, growth analyses and cell size. Physiologia Plantarum, 1990, 79, 679-685.	2.6	31
140	Collapse of riparian poplar forests downstream from dams in western prairies: Probable causes and prospects for mitigation. Environmental Management, 1990, 14, 451-464.	1.2	299
141	Gibberellins and Heterosis in Maize: Quantitative Relationships. Crop Science, 1990, 30, 281.	0.8	44
142	A Mutant Gene That Increases Gibberellin Production in Brassica. Plant Physiology, 1990, 93, 1168-1174.	2.3	55
143	Does Cytokinin Transport from Root-To-Shoot in the Xylem Sap Regulate Leaf Responses to Root Hypoxia?. Journal of Experimental Botany, 1990, 41, 1325-1333.	2.4	54
144	Growth and development of Brassica genotypes differing in endogenous gibberellin content. II. Gibberellin content, growth analyses and cell size. Physiologia Plantarum, 1990, 79, 679-685.	2.6	10

#	Article	IF	CITATIONS
145	Temperature and Photoperiod Effects Mediated by the Sorghum Maturity Genes. Crop Science, 1990, 30, 305-310.	0.8	31
146	Growth and development of Brassica genotypes differing in endogenous gibberellin content. I. Leaf and reproductive development. Physiologia Plantarum, 1990, 79, 673-678.	2.6	7
147	Endogenous Gibberellins and Shoot Growth and Development in <i>Brassica napus</i> . Plant Physiology, 1989, 89, 269-273.	2.3	41
148	Abrupt downstream forest decline following river damming in southern Alberta. Canadian Journal of Botany, 1989, 67, 1744-1749.	1.2	104
149	Lack of influence of photoperiod on the metabolism of gibberellin A20 in Salix pentandra. Physiologia Plantarum, 1989, 75, 506-510.	2.6	13
150	A Gibberellin-Deficient Brassica Mutant—rosette. Plant Physiology, 1989, 89, 482-487.	2.3	53
151	Identification of gibberellins A1 and A19 from Populus balsamifera x P. deltoides. Phytochemistry, 1988, 27, 11-14.	1.4	16
152	Gibberellins: A Phytohormonal Basis for Heterosis in Maize. Science, 1988, 241, 1216-1218.	6.0	67
153	Gibberellins, Amylase, and the Onset of Heterosis in Maize Seedlings. Journal of Experimental Botany, 1988, 39, 223-233.	2.4	13
154	Identification of Endogenous Gibberellins from Oilseed Rape. Plant Physiology, 1987, 85, 605-607.	2.3	22
155	Natural poplar hybrids from southern Alberta. I. Continuous variation for foliar characteristics. Canadian Journal of Botany, 1986, 64, 1382-1388.	1.2	47
156	Identification of Endogenous Gibberellins from <i>Sorghum</i> . Plant Physiology, 1986, 82, 330-332.	2.3	35
157	Photocontrol of Gibberellin Metabolism in Situ in Maize. Plant Physiology, 1986, 80, 448-453.	2.3	29
158	Low Temperature Eliminates Heterosis for Growth and Gibberellin Content in Maize 1. Crop Science, 1985, 25, 1063-1068.	0.8	11
159	Influence of plant density, nitrogen, water supply and pod or leaf removal on growth of oilseed rape. Field Crops Research, 1984, 8, 323-331.	2.3	22
160	Gibberellic acid induced growth acceleration in Populus hybrids. Canadian Journal of Forest Research, 1984, 14, 850-854.	0.8	3
161	Seasonal changes in 14CO2 assimilation and 14C translocation in oilseed rape. Field Crops Research, 1984, 8, 341-348.	2.3	33
162	Ethylene, indoleacetic acid and apical dominance in peas: A reappraisal. Physiologia Plantarum, 1983, 59, 481-487.	2.6	32

#	Article	IF	CITATIONS
163	Reversed-phase C18 high-performance liquid chromatography of acidic and conjugated gibberellins. Journal of Chromatography A, 1983, 256, 101-115.	1.8	103
164	Gibberellins and Heterosis in Maize. Plant Physiology, 1983, 71, 645-651.	2.3	43
165	Gibberellins and Heterosis in Maize. Plant Physiology, 1983, 71, 639-644.	2.3	27
166	Reversible Conjugation of Gibberellins <i>In Situ</i> in Maize. Plant Physiology, 1983, 73, 340-346.	2.3	62
167	Metabolism of Tritiated Gibberellin A20 in Maize. Plant Physiology, 1982, 70, 1614-1618.	2.3	28
168	Diallel Analysis of Leaf Number, Leaf Development Rate, and Plant Height of Early Maturing Maize 1. Crop Science, 1981, 21, 867-873.	0.8	15
169	Inheritance of tillering and flowering-time in early maturing maize. Euphytica, 1981, 30, 327-334.	0.6	6
170	Responses of Early Corn Inbreds to Photoperiod 1. Crop Science, 1980, 20, 679-682.	0.8	19
171	Changes of Endogenous Gibberellin-like Substances with Sex Reversal of the Apical Inflorescence of Corn. Plant Physiology, 1980, 66, 793-796.	2.3	85
172	DIALLEL ANALYSIS OF FLOWERING-TIME IN CORN (<i>ZEA MAYS</i>) USING A CORN HEAT UNIT TRANSFORMATION. Genome, 1980, 22, 633-640.	0.7	9