
Hans De Steur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7822383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Golden Rice to Golden Diets: How to turn its recent approval into practice. Global Food Security, 2022, 32, 100596.	8.1	14
2	Turning your weakness into my strength: How counter-messaging on conventional meat influences acceptance of cultured meat. Food Quality and Preference, 2022, 97, 104485.	4.6	15
3	Assessing Firm Readiness to Adopt Cluster-Based Innovative Projects: A Segmentation Analysis. Sustainability, 2022, 14, 947.	3.2	4
4	Willingness to Pay for Food Labelling Schemes in Vietnam: A Choice Experiment on Water Spinach. Foods, 2022, 11, 722.	4.3	13
5	COVID-19 Safety Measures in the Food Service Sector: Consumers' Attitudes and Transparency Perceptions at Three Different Stages of the Pandemic. Foods, 2022, 11, 810.	4.3	10
6	How to Make a Smartphone-Based App for Agricultural Advice Attractive: Insights from a Choice Experiment in Mexico. Agronomy, 2022, 12, 691.	3.0	2
7	Attitude and labelling preferences towards gene-edited food: a consumer study amongst millennials and Generation Z. British Food Journal, 2021, 123, 1268-1286.	2.9	21
8	The EmoSensory® wheel. , 2021, , 471-492.		0
9	Economic Feasibility of Iodine Agronomic Biofortification: A Projective Analysis with Ugandan Vegetable Farmers. Sustainability, 2021, 13, 10608.	3.2	4
10	Public Acceptability of Policy Interventions to Reduce Sugary Drink Consumption in Urban Vietnam. Sustainability, 2021, 13, 13422.	3.2	2
11	Importance of sustainable operations in food loss: evidence from the Belgian food processing industry. Annals of Operations Research, 2020, 290, 47-72.	4.1	55
12	Farmers' adoption of agricultural innovations: A systematic review on willingness to pay studies. Outlook on Agriculture, 2020, 49, 187-203.	3.4	37
13	Drivers, adoption, and evaluation of sustainability practices in Italian wine SMEs. Business Strategy and the Environment, 2020, 29, 744-762.	14.3	50
14	Multiplying the efficiency and impact of biofortification through metabolic engineering. Nature Communications, 2020, 11, 5203.	12.8	106
15	Labeling Nutrition-Sensitive Food Chains: A Consumer Preference Analysis of Milk Products. Frontiers in Nutrition, 2020, 7, 158.	3.7	2
16	Stakeholder perceptions on broiler chicken welfare during first-day processing and the pre-slaughter phase: a case study in Belgium. World's Poultry Science Journal, 2020, 76, 473-492.	3.0	2
17	The impact of calorie and physical activity labelling on consumer's emo-sensory perceptions and food choices. Food Research International, 2020, 133, 109166.	6.2	11
18	Farmers' Willingness to Adopt Late Blight-Resistant Genetically Modified Potatoes. Agronomy, 2019, 9, 280.	3.0	15

HANS DE STEUR

#	Article	IF	CITATIONS
19	Measuring food and nutritional losses through value stream mapping along the dairy value chain in Uganda. Resources, Conservation and Recycling, 2019, 150, 104416.	10.8	19
20	Would you purchase milk from a milk ATM? Consumers' attitude as a key determinant of preference and purchase intention in uganda. Agrekon, 2019, 58, 200-215.	1.3	4
21	What Do We Know About Chain Actors' Evaluation of New Food Technologies? A Systematic Review of Consumer and Farmer Studies. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 798-816.	11.7	37
22	On consumers' use, brand preference and equity of sports nutrition products. British Food Journal, 2019, 122, 635-654.	2.9	2
23	lodine Agronomic Biofortification of Cabbage (Brassica oleracea var. capitata) and Cowpea (Vigna) Tj ETQq1 1 C).784314 r 3.0	gBŢ <i>Į</i> Overlock
24	Predicting children's food choice using checkâ€allâ€ŧhatâ€apply questions. Journal of Sensory Studies, 2019, 34, e12471.	1.6	6
25	Emoji as a tool for measuring children's emotions when tasting food. Food Quality and Preference, 2018, 68, 322-331.	4.6	71
26	Towards nutrition sensitive agriculture. Actor readiness to reduce food and nutrient losses or wastes along the dairy value chain in Uganda. Journal of Cleaner Production, 2018, 182, 46-56.	9.3	27
27	Consumers' perceptions of GMâ€free labelled foods: A sensory experiment. International Journal of Consumer Studies, 2018, 42, 347-357.	11.6	10
28	A comparison of two low-calorie sweeteners and sugar in dark chocolate on sensory attributes and emotional conceptualisations. International Journal of Food Sciences and Nutrition, 2018, 69, 344-357.	2.8	14
29	Influence of sensory attributes on consumers' emotions and hedonic liking of chocolate. British Food Journal, 2018, 120, 1489-1503.	2.9	18
30	Stakeholders' Perceptions of Agronomic Iodine Biofortification: A SWOT-AHP Analysis in Northern Uganda. Nutrients, 2018, 10, 407.	4.1	16
31	Emotional and sensory profiling by children and teenagers: A case study of the checkâ€allâ€thatâ€apply method on biscuits. Journal of Sensory Studies, 2017, 32, e12249.	1.6	22
32	The social and economic impact of biofortification through genetic modification. Current Opinion in Biotechnology, 2017, 44, 161-168.	6.6	32
33	Is taste the key driver for consumer preference? A conjoint analysis study. Food Quality and Preference, 2017, 62, 323-331.	4.6	40
34	Editorial overview: Biofortification of crops: achievements, future challenges, socio-economic, health and ethical aspects. Current Opinion in Biotechnology, 2017, 44, vii-x.	6.6	13
35	GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations. Current Opinion in Biotechnology, 2017, 44, 181-188.	6.6	29
36	Comparison of response formats and concurrent hedonic measures for optimal use of the EmoSensory® Wheel. Food Research International, 2017, 93, 33-42.	6.2	36

HANS DE STEUR

#	Article	IF	CITATIONS
37	Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016. Lancet, The, 2017, 390, 1423-1459.	13.7	284
38	Methods matter: a metaâ€regression on the determinants of willingnessâ€toâ€pay studies on biofortified foods. Annals of the New York Academy of Sciences, 2017, 1390, 34-46.	3.8	32
39	The effect of the research setting on the emotional and sensory profiling under blind, expected, and informed conditions: A study on premium and private label yogurt products. Journal of Dairy Science, 2017, 100, 169-186.	3.4	41
40	The socioeconomics of genetically modified biofortified crops: a systematic review and metaâ€analysis. Annals of the New York Academy of Sciences, 2017, 1390, 14-33.	3.8	20
41	Emotional and Sensory Evaluation of Cheese. , 2017, , 295-311.		0
42	Consumer Acceptance and Willingness-to-Pay for Genetically Modified Foods with Enhanced Vitamin Levels. , 2016, , 195-206.		1
43	Effectiveness of Folic Acid Fortified Flour for Prevention of Neural Tube Defects in a High Risk Region. Nutrients, 2016, 8, 152.	4.1	28
44	Integration and validation of an SMS-based bidding procedure of eliciting consumers' willingness-to-pay for food. British Food Journal, 2016, 118, 2200-2217.	2.9	2
45	Consumer evaluation of food with nutritional benefits: a systematic review and narrative synthesis. International Journal of Food Sciences and Nutrition, 2016, 67, 355-371.	2.8	42
46	Applying Value Stream Mapping to reduce food losses and wastes in supply chains: A systematic review. Waste Management, 2016, 58, 359-368.	7.4	107
47	A novel framework for analysing stakeholder interest in healthy foods: A case study on iodine biofortification. Ecology of Food and Nutrition, 2016, 55, 182-208.	1.6	8
48	Applying the food technology neophobia scale in a developing country context. A case-study on processed matooke (cooking banana) flour in Central Uganda. Appetite, 2016, 96, 391-398.	3.7	24
49	Emotional and sensory profiling of insect-, plant- and meat-based burgers under blind, expected and informed conditions. Food Quality and Preference, 2016, 52, 27-31.	4.6	211
50	Impact of Health Labels on Flavor Perception and Emotional Profiling: A Consumer Study on Cheese. Nutrients, 2015, 7, 10251-10268.	4.1	68
51	The Potential Market for GM Rice with Health Benefits in a Chinese High-Risk Region. Journal of Food Products Marketing, 2015, 21, 231-243.	3.3	15
52	An integrated method for the emotional conceptualization and sensory characterization of food products: The EmoSensory ® Wheel. Food Research International, 2015, 78, 96-107.	6.2	77
53	Status and market potential of transgenic biofortified crops. Nature Biotechnology, 2015, 33, 25-29.	17.5	86
54	Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology, 2015, 33, 1076-1078.	17.5	140

HANS DE STEUR

#	Article	IF	CITATIONS
55	Stakeholder reactions toward iodine biofortified foods. An application of protection motivation theory. Appetite, 2015, 92, 295-302.	3.7	28
56	Genetically Modified Rice with Health Benefits as a Means to Reduce Micronutrient Malnutrition. , 2014, , 283-299.		12
57	Cognitive biases and design effects in experimental auctions. China Agricultural Economic Review, 2014, 6, 413-432.	3.7	17
58	Consumer preferences for micronutrient strategies in China. A comparison between folic acid supplementation and folate biofortification. Public Health Nutrition, 2014, 17, 1410-1420.	2.2	24
59	Present and future of folate biofortification of crop plants. Journal of Experimental Botany, 2014, 65, 895-906.	4.8	98
60	Conceptual framework for ex-ante evaluation at the micro/macro level of GM crops with health benefits. Trends in Food Science and Technology, 2014, 39, 116-134.	15.1	19
61	Evaluating GM biofortified rice in areas with a high prevalence of folate deficiency. International Journal of Biotechnology, 2014, 13, 257.	1.2	1
62	Role of Information on Consumers' Willingnessâ€toâ€pay for Geneticallyâ€modified Rice with Health Benefits: An Application to <scp>C</scp> hina. Asian Economic Journal, 2013, 27, 391-408.	0.9	33
63	How negative product attributes alter consumer perceptions of folate biofortified rice in a high risk region of China. International Journal of Biotechnology, 2013, 12, 269.	1.2	12
64	Ex-ante Evaluation of Biotechnology Innovations: the Case of Folate Biofortified Rice in China. Current Pharmaceutical Biotechnology, 2012, 13, 2751-2760.	1.6	17
65	Determinants of willingness-to-pay for GM rice with health benefits in a high-risk region: Evidence from experimental auctions for folate biofortified rice in China. Food Quality and Preference, 2012, 25, 87-94.	4.6	53
66	Potential impact and cost-effectiveness of multi-biofortified rice in China. New Biotechnology, 2012, 29, 432-442.	4.4	92
67	Folates and Folic Acid: From Fundamental Research Toward Sustainable Health. Critical Reviews in Plant Sciences, 2010, 29, 14-35.	5.7	114
68	Health impact in China of folate-biofortified rice. Nature Biotechnology, 2010, 28, 554-556.	17.5	47
69	Should GM Rice with Nutrition Benefits Be Deployed? Findings from Biotech and Socio-Economic Research. , 0, , 139-150.		2