Alexandros Katsaounis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/782220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of applied potential on the performance of an electroactive methanogenic biocathode used for bioelectrochemical <scp>CO₂</scp> reduction to <scp>CH₄</scp> . Journal of Chemical Technology and Biotechnology, 2022, 97, 643-652.	3.2	3
2	Kinetic study of CO2 hydrogenation on Ru/ YSZ catalyst using a monolithic electropromoted reactor (MEPR). Chemical Engineering Journal, 2022, 430, 132967.	12.7	9
3	Electrochemical control of the RWGS reaction over Ni nanoparticles deposited on yttria stabilized zirconia. Catalysis Science and Technology, 2022, 12, 1869-1879.	4.1	6
4	Electrochemical Oxidation of Pharmaceuticals on a Pt–SnO2/Ti Electrode. Electrocatalysis, 2022, 13, 363-377.	3.0	6
5	Non-Faradaic Electrochemical Promotion of BrÃ,nsted Acid-Catalyzed Dehydration Reactions over Molybdenum Oxide. ACS Catalysis, 2022, 12, 906-912.	11.2	6
6	Electrochemical promotion of CO2 hydrogenation in a monolithic electrochemically promoted reactor (MEPR). Applied Catalysis B: Environmental, 2021, 284, 119695.	20.2	14
7	The role of the promoting ionic species in electrochemical promotion and in metal-support interactions. Catalysis Today, 2021, 363, 122-127.	4.4	9
8	Combined electrocoagulation and electrochemical oxidation treatment for groundwater denitrification. Journal of Environmental Management, 2021, 285, 112068.	7.8	16
9	Glassy Carbon Electrochemical Sensor for Gallic and Vanillic Acid Detection in Aqueous Solutions. Applied Sciences (Switzerland), 2021, 11, 8045.	2.5	2
10	Nitrate removal from groundwater using a batch and continuous flow hybrid Fe-electrocoagulation and electrooxidation system. Journal of Environmental Management, 2021, 297, 113387.	7.8	13
11	Electrochemical promotion of methane oxidation over nanodispersed Pd/Co3O4 catalysts. Catalysis Today, 2020, 355, 910-920.	4.4	20
12	Tuning the RWGS Reaction via EPOC and In Situ Electro-oxidation of Cobalt Nanoparticles. ACS Catalysis, 2020, 10, 14916-14927.	11.2	24
13	Electrochemical promotion of Ru nanoparticles deposited on a proton conductor electrolyte during CO2 hydrogenation. Applied Catalysis B: Environmental, 2020, 276, 119148.	20.2	34
14	Effect of Carbon Support on the Electrocatalytic Properties of Ptâ^'Ru Catalysts. ChemElectroChem, 2019, 6, 4970-4979.	3.4	17
15	Effect of Carbon Support on the Electrocatalytic Properties of Ptâ^'Ru Catalysts. ChemElectroChem, 2019, 6, 4921-4921.	3.4	2
16	Hybrid graphene nanoplatelet/manganese oxide electrodes for solid-state supercapacitors and application to carbon fiber composite multifunctional materials. Journal of Energy Storage, 2019, 23, 515-525.	8.1	19
17	Electrochemical promotion of carbon supported Pt, Rh and Pd catalysts for H ₂ oxidation in aqueous alkaline media. Journal of Chemical Technology and Biotechnology, 2018, 93, 1542-1548.	3.2	5
18	Electrochemical promotion of nanodispersed Ru-Co catalysts for the hydrogenation of CO2. Applied Catalysis B: Environmental, 2018, 232, 60-68.	20.2	27

#	Article	IF	CITATIONS
19	Steady State Multiplicities in Low Temperature PEM Fuel Cells. Materials Today: Proceedings, 2018, 5, 27397-27405.	1.8	1
20	Study of low temperature alcohol electro-reforming. Materials Today: Proceedings, 2018, 5, 27337-27344.	1.8	7
21	Electrochemical promotion of methane oxidation on Pd nanoparticles deposited on YSZ. Materials Today: Proceedings, 2018, 5, 27345-27352.	1.8	6
22	Electrochemical Promotion of CO2 Reduction on a Dispersed Ru/YSZ Catalyst Supported on YSZ Solid Electrolyte. Materials Today: Proceedings, 2018, 5, 27617-27625.	1.8	8
23	The Effect of Polarization and Reaction Mixture on the Rh/YSZ Oxidation State During Ethylene Oxidation Studied by Near Ambient Pressure XPS. Topics in Catalysis, 2018, 61, 2142-2151.	2.8	8
24	Effect of TiO2 on Pt-Ru-based anodes for methanol electroreforming. Applied Catalysis B: Environmental, 2018, 237, 811-816.	20.2	23
25	Investigation of Advanced Components in a High Pressure Single-Cell Electrolyser for the Development of a HP-PEM-ELY Stack as Part of a Regenerative Fuel Cell System. E3S Web of Conferences, 2017, 16, 09004.	0.5	Ο
26	Corrosion resistance and mechanical characteristics of dual-phase steel B500c, after shot blasting processes. International Journal of Structural Integrity, 2017, 8, 544-564.	3.3	4
27	Electrochemical treatment of biologically pre-treated dairy wastewater using dimensionally stable anodes. Journal of Environmental Management, 2017, 202, 217-224.	7.8	38
28	Experimental investigation and mathematical modeling of triode PEM fuel cells. Electrochimica Acta, 2017, 248, 518-533.	5.2	6
29	A critical review of nanotechnologies for composite aerospace structures. CEAS Space Journal, 2017, 9, 35-57.	2.3	36
30	Boron-doped diamond electrooxidation of ethyl paraben: The effect of electrolyte on by-products distribution and mechanisms. Journal of Environmental Management, 2017, 195, 148-156.	7.8	58
31	Comparative study of the electrochemical promotion of CO2 hydrogenation on Ru using Na+, K+, H+ and O2â~' conducting solid electrolytes. Surface Science, 2016, 646, 194-203.	1.9	38
32	Preface to the Special Issue. Topics in Catalysis, 2015, 58, 1151-1152.	2.8	0
33	Effect of TiO 2 Loading on Pt-Ru Catalysts During Alcohol Electrooxidation. Electrochimica Acta, 2015, 179, 578-587.	5.2	22
34	Electrochemical promotion of the hydrogenation of CO 2 on Ru deposited on a BZY proton conductor. Journal of Catalysis, 2015, 331, 98-109.	6.2	44
35	Electrochemical promotion of CO 2 hydrogenation on Ru catalyst–electrodes supported on a K–β″–Al 2 O 3 solid electrolyte. Electrochimica Acta, 2015, 179, 556-564.	5.2	21
36	Comparative Study of the Electrochemical Promotion of CO ₂ Hydrogenation over Ru‣upported Catalysts using Electronegative and Electropositive Promoters. ChemElectroChem, 2014, 1, 254-262.	3.4	21

Alexandros Katsaounis

#	Article	IF	CITATIONS
37	Organic Pollutants in Water Using DSA Electrodes, In-Cell Mediated (via Active Chlorine) Electrochemical Oxidation. , 2014, , 1407-1416.		2
38	Mathematical modeling of Ni/GDC and Au–Ni/GDC SOFC anodes performance under internal methane steam reforming conditions. Journal of Catalysis, 2013, 306, 116-128.	6.2	42
39	Electrochemical oxidation of alcohols on Pt–TiO2 binary electrodes. International Journal of Hydrogen Energy, 2013, 38, 15395-15404.	7.1	39
40	Pt–Ir Binary Electrodes for Direct Oxidation of Methanol in Low-Temperature Fuel Cells (DMFCs). Electrocatalysis, 2013, 4, 375-381.	3.0	17
41	Use of seawater for the boron-doped diamond electrochemical treatment of diluted vinasse wastewater. Water Science and Technology, 2013, 68, 2344-2350.	2.5	8
42	Photoelectrocatalytic disinfection of water and wastewater: performance evaluation by qPCR and culture techniques. Journal of Water and Health, 2013, 11, 21-29.	2.6	13
43	Effects of carbonate on the electrolytic removal of ammonia and urea from urine with thermally prepared IrO2 electrodes. Journal of Applied Electrochemistry, 2012, 42, 787-795.	2.9	70
44	Removal of faecal indicator pathogens from waters and wastewaters by photoelectrocatalytic oxidation on TiO2/Ti films under simulated solar radiation. Environmental Science and Pollution Research, 2012, 19, 3782-3790.	5.3	15
45	Hydrogenation of CO ₂ over Ru/YSZ Electropromoted Catalysts. ACS Catalysis, 2012, 2, 770-780.	11.2	85
46	Oscillatory behavior of Rh/YSZ under electropromoted conditions. Chemical Physics Letters, 2012, 519-520, 89-92.	2.6	2
47	Anodic oxidation of textile dyehouse effluents on boron-doped diamond electrode. Journal of Hazardous Materials, 2012, 207-208, 91-96.	12.4	97
48	Reprint of: Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. Journal of Hazardous Materials, 2012, 207-208, 73-78.	12.4	29
49	Electrochemical enhancement of solar photocatalysis: Degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Research, 2011, 45, 2996-3004.	11.3	102
50	BDD anodic oxidation as tertiary wastewater treatment for the removal of emerging microâ€pollutants, pathogens and organic matter. Journal of Chemical Technology and Biotechnology, 2011, 86, 1233-1236.	3.2	71
51	Solar light-induced degradation of bisphenol-A with TiO2 immobilized on Ti. Catalysis Today, 2011, 161, 110-114.	4.4	47
52	Degradation of Reactive Red 120 using hydrogen peroxide in subcritical water. Desalination, 2011, 274, 200-205.	8.2	36
53	Electrochemical oxidation of ammonia (NH4+/NH3) on thermally and electrochemically prepared IrO2 electrodes. Electrochimica Acta, 2011, 56, 1361-1365.	5.2	71
54	Electrochemical oxidation of stabilized landfill leachate on DSA electrodes. Journal of Hazardous Materials, 2011, 190, 460-465.	12.4	71

#	Article	IF	CITATIONS
55	DSA electrochemical treatment of olive mill wastewater on Ti/RuO2 anode. Journal of Applied Electrochemistry, 2010, 40, 729-737.	2.9	70
56	Recent developments and trends in the electrochemical promotion of catalysis (EPOC). Journal of Applied Electrochemistry, 2010, 40, 885-902.	2.9	78
57	Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. Journal of Applied Electrochemistry, 2010, 40, 1759-1765.	2.9	66
58	Ammonia oxidation to nitrogen mediated by electrogenerated active chlorine on Ti/PtOx-IrO2. Electrochemistry Communications, 2010, 12, 1203-1205.	4.7	88
59	Electrochemical promotion of methane oxidation on Rh/YSZ. Applied Catalysis B: Environmental, 2010, 101, 31-37.	20.2	22
60	Anodic oxidation of phenol on Ti/IrO2 electrode: Experimental studies. Catalysis Today, 2010, 151, 185-189.	4.4	73
61	Electrochemical oxidation of benzoic acid in water over boron-doped diamond electrodes: Statistical analysis of key operating parameters, kinetic modeling, reaction by-products and ecotoxicity. Chemical Engineering Journal, 2010, 160, 538-548.	12.7	68
62	Effectiveness factor of isopropanol oxidation on IrO2 based electrodes of different loading. Electrochimica Acta, 2010, 55, 8215-8219.	5.2	4
63	Effectiveness factor of fast (Fe3+/Fe2+), moderate (Cl2/Clâ^) and slow (O2/H2O) redox couples using IrO2-based electrodes of different loading. Journal of Applied Electrochemistry, 2009, 39, 1827-1833.	2.9	11
64	Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/lrO2 anode. Journal of Hazardous Materials, 2009, 167, 268-274.	12.4	97
65	Electrochemical behaviour of ammonia (NH4+/NH3) on electrochemically grown anodic iridium oxide film (AIROF) electrode. Electrochemistry Communications, 2009, 11, 1590-1592.	4.7	15
66	Boron-doped diamond anodic treatment of olive mill wastewaters: Statistical analysis, kinetic modeling and biodegradability. Water Research, 2009, 43, 3999-4009.	11.3	82
67	Temperature programmed desorption of oxygen from Pd films interfaced with Y2O3-doped ZrO2. Journal of Applied Electrochemistry, 2008, 38, 1097-1110.	2.9	3
68	First principles analytical prediction of the conductivity of Nafion membranes. Electrochimica Acta, 2007, 52, 2244-2256.	5.2	20
69	The effect of membrane thickness on the conductivity of Nafion. Electrochimica Acta, 2006, 51, 2743-2755.	5.2	89
70	Potential-dependent electrolyte resistance and steady-state multiplicities of PEM fuel cells. Solid State Ionics, 2006, 177, 2397-2401.	2.7	10
71	Monolithic electrochemically promoted reactors: A step for the practical utilization of electrochemical promotion. Solid State Ionics, 2006, 177, 2201-2204.	2.7	23
72	The effect of catalyst film thickness on the electrochemical promotion of ethylene oxidation on Pt. Topics in Catalysis, 2006, 39, 97-100.	2.8	16

Alexandros Katsaounis

#	Article	IF	CITATIONS
73	The effect of catalyst film thickness on the magnitude of the electrochemical promotion of catalytic reactions. Topics in Catalysis, 2006, 38, 157-167.	2.8	21
74	Proton and electron wave-particles in chemical and physical environments. Applied Catalysis B: Environmental, 2006, 64, 111-120.	20.2	2
75	The role of potential-dependent electrolyte resistance in the performance, steady-state multiplicities and oscillations of PEM fuel cells: Experimental investigation and macroscopic modelling. Electrochimica Acta, 2005, 50, 5132-5143.	5.2	34
76	Electrochemical promotion of catalysis: mechanistic investigations and monolithic electropromoted reactors. Catalysis Today, 2005, 100, 133-144.	4.4	34
77	Proton tunneling-induced bistability, oscillations and enhanced performance of PEM fuel cells. Applied Catalysis B: Environmental, 2005, 56, 251-258.	20.2	29
78	Electrochemical Promotion of Catalysis: Mechanistic Investigations and Monolithic Electropromoted Reactors. ChemInform, 2005, 36, no.	0.0	0
79	Comparative isotope-aided investigation of electrochemical promotion and metal?support interactions2. CO oxidation by 18O2 on electropromoted Pt films deposited on YSZ and on nanodispersed Pt/YSZ catalysts. Journal of Catalysis, 2004, 226, 197-209.	6.2	45
80	Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions. Applied Catalysis B: Environmental, 2004, 52, 181-196.	20.2	65
81	Comparative isotope-aided investigation of electrochemical promotion and metal–support interactions 1. 1802 TPD of electropromoted Pt films deposited on YSZ and of dispersed Pt/YSZ catalysts. Journal of Catalysis, 2004, 222, 192-206.	6.2	70
82	Temperature programmed oxygen desorption of the perovskites series Ln0.65Sr0.3Mn0.8Co0.2O3 (Ln=La-Gd). Ionics, 2001, 7, 101-104.	2.4	4
83	High-Pressure Electrochemical Promotion of Ammonia Synthesis over an Industrial Iron Catalyst. Journal of Physical Chemistry A, 2000, 104, 10600-10602.	2.5	89
84	Non-precious Sn as alternative substitute metal in graphene-based catalysts for methanol electrooxidation. Journal of Applied Electrochemistry, 0, , 1.	2.9	3