Muhammad Shahab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7822180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased hypothalamic GPR54 signaling: A potential mechanism for initiation of puberty in primates. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2129-2134.	7.1	782
2	Kisspeptin Is Essential for the Full Preovulatory LH Surge and Stimulates GnRH Release from the Isolated Ovine Median Eminence. Endocrinology, 2011, 152, 1001-1012.	2.8	210
3	Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sciences, 2018, 8, 177.	2.3	139
4	Hypothalamic Expression of KISS1 and Gonadotropin Inhibitory Hormone Genes During the Menstrual Cycle of a Non-Human Primate1. Biology of Reproduction, 2010, 83, 568-577.	2.7	125
5	Galanin-Like Peptide as a Possible Link between Metabolism and Reproduction in the Macaque. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1760-1766.	3.6	52
6	Kisspeptin as a link between metabolism and reproduction: Evidences from rodent and primate studies. Metabolism: Clinical and Experimental, 2013, 62, 898-910.	3.4	48
7	Neuroendocrine mechanisms that delay and initiate puberty in higher primates. Physiology and Behavior, 2002, 77, 717-722.	2.1	43
8	Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nature Reviews Urology, 2016, 13, 21-32.	3.8	42
9	Short-term fasting attenuates the response of the HPG axis to kisspeptin challenge in the adult male rhesus monkey (Macaca mulatta). Life Sciences, 2008, 83, 633-637.	4.3	37
10	lrisin in the primate hypothalamus and its effect on GnRH in vitro. Journal of Endocrinology, 2019, 241, 175-187.	2.6	31
11	Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway. Frontiers in Endocrinology, 2018, 9, 123.	3.5	29
12	Immunocytochemical localization of kisspeptin and kisspeptin receptor in the primate testis. Journal of Medical Primatology, 2016, 45, 105-111.	0.6	28
13	Expression and actions of GnIH and its orthologs in vertebrates: Current status and advanced knowledge. Neuropeptides, 2016, 59, 9-20.	2.2	28
14	Hypothesis: Irisin is a metabolic trigger for the activation of the neurohormonal axis governing puberty onset. Medical Hypotheses, 2016, 95, 1-4.	1.5	17
15	Kisspeptin-10 Modulates the Proliferation and Differentiation of the Rhesus Monkey Derived Stem Cell Line: R366.4. Scientific World Journal, The, 2013, 2013, 1-7.	2.1	12
16	Fasting induced kisspeptin signaling suppression is regulated by glutamate mediated cues in adult male rhesus macaque (Macaca mulatta). Neuropeptides, 2015, 52, 39-45.	2.2	10
17	Kiss1 and Kiss1 receptor expression in the rhesus monkey testis: a possible local regulator of testicular function. Open Life Sciences, 2013, 8, 968-974.	1.4	9
18	Discordance in the Dependence on Kisspeptin Signaling in Mini Puberty vs Adolescent Puberty: Human Genetic Evidence. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1273-1276.	3.6	9

MUHAMMAD SHAHAB

#	Article	IF	CITATIONS
19	Study of the effect of 26RF- and 43RF-amides on Testosterone and Prolactin secretion in the adult male rhesus monkey (Macaca mulatta). Peptides, 2012, 36, 23-28.	2.4	7
20	Peripheral administration of kisspeptin antagonist does not alter basal plasma testosterone but decreases plasma adiponectin levels in adult male rhesus macaques. Turkish Journal of Biology, 2014, 38, 450-456.	0.8	7
21	Ageâ€dependent changes in the reproductive axis responsiveness to kisspeptinâ€10 administration in healthy men. Andrologia, 2019, 51, e13219.	2.1	7
22	Effect of maternal iodine supplementation on thyroid function and birth outcome in goiter endemic areas. Current Medical Research and Opinion, 2015, 31, 667-674.	1.9	6
23	Conadotropin inhibitory hormone and RF9 stimulate hypothalamic-pituitary-adrenal axis in adult male rhesus monkeys. Neuropeptides, 2017, 66, 1-7.	2.2	6
24	Inverse age-related changes between hypothalamic NPY and KISS1 gene expression during pubertal initiation in male rhesus monkey. Reproductive Biology, 2022, 22, 100599.	1.9	6
25	Galanin-Like Peptide Elicits a Robust Discharge of Growth Hormone in the Rhesus Monkey <i>(Macaca) Tj ETQq1</i>	1 0.78431 2.5	4 ₅ rgBT /Ov
26	Study of the role of novel RF-amide neuropeptides in affecting growth hormone secretion in a representative non-human primate (Macaca mulatta). Endocrine, 2012, 42, 658-663.	2.3	5
27	Prevalence of goiter and iodine status among 6-12 years school age children in district Kohat, Pakistan. South East Asia Journal of Public Health, 2015, 4, 42-46.	0.3	5
28	Changes in the Responsiveness of the Hypothalamic-Pituitary-Gonadal Axis to Kisspeptin-10 Administration during Pubertal Transition in Boys. International Journal of Endocrinology, 2018, 2018, 1-10.	1.5	5
29	Kisspeptin-10 treatment generated specific GnRH expression in cells differentiated from rhesus monkey derived Lyon NSCs. Neuroscience, 2017, 349, 318-329.	2.3	4
30	RF9 Rescues Cortisol-Induced Repression of Testosterone Levels in Adult Male Macaques. Frontiers in Physiology, 2021, 12, 630796.	2.8	2
31	Triggering puberty in primates: is it NPY?. Nature Reviews Endocrinology, 2022, , .	9.6	0