Petros C Karakousis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7821831/publications.pdf

Version: 2024-02-01

70961 102304 5,410 134 41 66 citations h-index g-index papers 143 143 143 6481 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Progression and Resolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Golden Syrian Hamsters. American Journal of Pathology, 2022, 192, 195-207.	1.9	22
2	Association of Lipid Levels With COVID-19 Infection, Disease Severity and Mortality: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 2022, 9, 862999.	1.1	19
3	HDL cholesterol levels and susceptibility to COVID-19. EBioMedicine, 2022, 82, 104166.	2.7	11
4	The Impact of Hypertension and Use of Calcium Channel Blockers on Tuberculosis Treatment Outcomes. Clinical Infectious Diseases, 2021, 73, e3409-e3418.	2.9	8
5	Albumin fusion with granulocyte-macrophage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cellular and Molecular Immunology, 2021, 18, 2393-2401.	4.8	11
6	Mycobacterium tuberculosis Infection Drives Mitochondria-Biased Dysregulation of Host Transfer RNA–Derived Fragments. Journal of Infectious Diseases, 2021, 223, 1796-1805.	1.9	10
7	Reply to Lai et al. Journal of Infectious Diseases, 2021, 224, 1269-1270.	1.9	1
8	Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infectious Diseases, 2021, 21, 496.	1.3	85
9	Male Sex Is Associated With Worse Microbiological and Clinical Outcomes Following Tuberculosis Treatment: A Retrospective Cohort Study, a Systematic Review of the Literature, and Meta-analysis. Clinical Infectious Diseases, 2021, 73, 1580-1588.	2.9	18
10	Higher Serum Cholesterol Levels Are Associated With Reduced Systemic Inflammation and Mortality During Tuberculosis Treatment Independent of Body Mass Index. Frontiers in Cardiovascular Medicine, 2021, 8, 696517.	1.1	11
11	Integrative Multi-Omics Reveals Serum Markers of Tuberculosis in Advanced HIV. Frontiers in Immunology, 2021, 12, 676980.	2.2	12
12	Key Macrophage Responses to Infection With Mycobacterium tuberculosis Are Co-Regulated by microRNAs and DNA Methylation. Frontiers in Immunology, 2021, 12, 685237.	2.2	13
13	The association of atherosclerotic cardiovascular disease and statin use with inflammation and treatment outcomes in tuberculosis. Scientific Reports, 2021, 11, 15283.	1.6	11
14	Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. MBio, 2021, 12, e0097421.	1.8	69
15	Genetic Determinants of Intrinsic Antibiotic Tolerance in Mycobacterium avium. Microbiology Spectrum, 2021, 9, e0024621.	1.2	4
16	Statins use and COVID-19 outcomes in hospitalized patients. PLoS ONE, 2021, 16, e0256899.	1.1	31
17	The Global Health Security Index is not predictive of vaccine rollout responses among OECD countries. International Journal of Infectious Diseases, 2021, 113, 7-11.	1.5	22
18	Statins as Host-Directed Therapy for Tuberculosis. , 2021, , 109-119.		3

#	Article	IF	Citations
19	Targeting the Mycobacterium tuberculosis Stringent Response as a Strategy for Shortening Tuberculosis Treatment. Frontiers in Microbiology, 2021, 12, 744167.	1.5	9
20	LB19. Intramuscular therapeutic immunization targeting RelMtb/MIP-3 induces immune signatures associated with better TB control <i>in vivo</i> compared to. Open Forum Infectious Diseases, 2021, 8, S815-S815.	0.4	0
21	The Kynurenine/Tryptophan Ratio Is a Sensitive Biomarker for the Diagnosis of Pediatric Tuberculosis Among Indian Children. Frontiers in Immunology, 2021, 12, 774043.	2.2	3
22	Adjunctive Host-Directed Therapy With Statins Improves Tuberculosis-Related Outcomes in Mice. Journal of Infectious Diseases, 2020, 221, 1079-1087.	1.9	51
23	The Global Health Security Index is not predictive of coronavirus pandemic responses among Organization for Economic Cooperation and Development countries. PLoS ONE, 2020, 15, e0239398.	1.1	86
24	Integration of metabolomics and transcriptomics reveals novel biomarkers in the blood for tuberculosis diagnosis in children. Scientific Reports, 2020, 10, 19527.	1.6	23
25	Mechanisms of Antibiotic Tolerance in Mycobacterium avium Complex: Lessons From Related Mycobacteria. Frontiers in Microbiology, 2020, 11, 573983.	1.5	16
26	The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis. Journal of Lipid Research, 2020, 61, 1617-1628.	2.0	24
27	Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Current HIV Research, 2020, 18, 19-28.	0.2	9
28	Reply to Hu et al: Could there be detrimental effects of statin adjunctive TB therapy on immune responses?. Journal of Infectious Diseases, 2020, 222, 336-337.	1.9	1
29	Identifying the essential genes of Mycobacterium avium subsp. hominissuis with Tn-Seq using a rank-based filter procedure. Scientific Reports, 2020, 10, 1095.	1.6	13
30	Treatment with an immature dendritic cell-targeting vaccine supplemented with IFN- $\hat{l}\pm$ and an inhibitor of DNA methylation markedly enhances survival in a murine melanoma model. Cancer Immunology, Immunotherapy, 2020, 69, 569-580.	2.0	13
31	Antibiotic Treatment Shapes the Antigenic Environment During Chronic TB Infection, Offering Novel Targets for Therapeutic Vaccination. Frontiers in Immunology, 2020, 11, 680.	2.2	7
32	Stability and Viability of SARS-CoV-2. New England Journal of Medicine, 2020, 382, 1962-1966.	13.9	45
33	The New Frontier of Host-Directed Therapies for Mycobacterium avium Complex. Frontiers in Immunology, 2020, 11, 623119.	2.2	12
34	Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS ONE, 2020, 15, e0241541.	1.1	124
35	Title is missing!. , 2020, 15, e0241541.		0
36	Title is missing!. , 2020, 15, e0241541.		0

#	Article	lF	Citations
37	Title is missing!. , 2020, 15, e0241541.		O
38	Title is missing!. , 2020, 15, e0241541.		0
39	Title is missing!. , 2020, 15, e0239398.		0
40	Title is missing!. , 2020, 15, e0239398.		0
41	Title is missing!. , 2020, 15, e0239398.		0
42	Title is missing!. , 2020, 15, e0239398.		0
43	Inhibiting the stringent response blocks <i>Mycobacterium tuberculosis</i> entry into quiescence and reduces persistence. Science Advances, 2019, 5, eaav2104.	4.7	93
44	Remembering the Host in Tuberculosis Drug Development. Journal of Infectious Diseases, 2019, 219, 1518-1524.	1.9	33
45	Metformin Use Reverses the Increased Mortality Associated With Diabetes Mellitus During Tuberculosis Treatment. Clinical Infectious Diseases, 2018, 66, 198-205.	2.9	115
46	Transcriptional Approach for Decoding the Mechanism of rpoC Compensatory Mutations for the Fitness Cost in Rifampicin-Resistant Mycobacterium tuberculosis. Frontiers in Microbiology, 2018, 9, 2895.	1.5	14
47	Unprecedented in Vitro Antitubercular Activitiy of Manganese(II) Complexes Containing 1,10-Phenanthroline and Dicarboxylate Ligands: Increased Activity, Superior Selectivity, and Lower Toxicity in Comparison to Their Copper(II) Analogs. Frontiers in Microbiology, 2018, 9, 1432.	1.5	22
48	Intranasal Immunization with DnaK Protein Induces Protective Mucosal Immunity against Tuberculosis in CD4-Depleted Mice. Frontiers in Cellular and Infection Microbiology, 2018, 8, 31.	1.8	8
49	Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D. Frontiers in Microbiology, 2018, 9, 494.	1.5	28
50	Gene Enrichment Analysis Reveals Major Regulators of Mycobacterium tuberculosis Gene Expression in Two Models of Antibiotic Tolerance. Frontiers in Microbiology, 2018, 9, 610.	1.5	10
51	Genome analysis of Mycobacterium avium subspecies hominissuis strain 109. Scientific Data, 2018, 5, 180277.	2.4	33
52	Metformin Adjunctive Therapy Does Not Improve the Sterilizing Activity of the First-Line Antitubercular Regimen in Mice. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	33
53	<i>In vitro</i> and <i>in vivo</i> fitness costs associated with <i>Mycobacterium tuberculosis</i> RpoB mutation H526D. Future Microbiology, 2017, 12, 753-765.	1.0	34
54	Development of a Novel Lead that Targets M.Âtuberculosis Polyketide Synthase 13. Cell, 2017, 170, 249-259.e25.	13.5	124

#	Article	IF	CITATIONS
55	Mechanisms of Action and Resistance of the Antimycobacterial Agents. , 2017, , 359-383.		2
56	Pleuropulmonary Kaposi Sarcoma in the Setting of Immune Reactivation. Journal of Pulmonary $\&$ Respiratory Medicine, 2016, 6, .	0.1	3
57	TLR2-Modulating Lipoproteins of the Mycobacterium tuberculosis Complex Enhance the HIV Infectivity of CD4+ T Cells. PLoS ONE, 2016, 11, e0147192.	1.1	7
58	Empirical Antifungal Therapy in Critically Ill Patients With Sepsis. JAMA - Journal of the American Medical Association, 2016, 316, 1549.	3.8	10
59	Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2016, 60, 6460-6470.	1.4	41
60	First Evaluation of GenoType MTBDR <i>plus</i> 2.0 Performed Directly on Respiratory Specimens in Central America. Journal of Clinical Microbiology, 2016, 54, 2498-2502.	1.8	8
61	Statin adjunctive therapy shortens the duration of TB treatment in mice. Journal of Antimicrobial Chemotherapy, 2016, 71, 1570-1577.	1.3	87
62	Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infectious Diseases, 2016, 2, 231-239.	1.8	37
63	Identification of a Transcription Factor That Regulates Host Cell Exit and Virulence of Mycobacterium tuberculosis. PLoS Pathogens, 2016, 12, e1005652.	2.1	22
64	Can the duration of tuberculosis treatment be shortened with higher dosages of rifampicin?. Frontiers in Microbiology, 2015, 6, 1117.	1.5	6
65	Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study. PLoS ONE, 2015, 10, e0132249.	1.1	83
66	Metabolomics specificity of tuberculosis plasma revealed by 1H NMR spectroscopy. Tuberculosis, 2015, 95, 294-302.	0.8	25
67	A tuberculosis ontology for host systems biology. Tuberculosis, 2015, 95, 570-574.	0.8	11
68	Deficiency of the Novel Exopolyphosphatase Rv1026/PPX2 Leads to Metabolic Downshift and Altered Cell Wall Permeability in Mycobacterium tuberculosis. MBio, 2015, 6, e02428.	1.8	83
69	Differential expression of miRNAs and their relation to active tuberculosis. Tuberculosis, 2015, 95, 395-403.	0.8	37
70	Host-Mediated Bioactivation of Pyrazinamide: Implications for Efficacy, Resistance, and Therapeutic Alternatives. ACS Infectious Diseases, 2015, 1, 203-214.	1.8	71
71	senX3-independent contribution of regX3 to Mycobacterium tuberculosis virulence. BMC Microbiology, 2014, 14, 265.	1.3	25
72	PA-824 is as effective as isoniazid against latent tuberculosis infection in C3HeB/FeJ mice. International Journal of Antimicrobial Agents, 2014, 44, 564-566.	1,1	15

#	Article	IF	CITATIONS
73	Differential regulation of the two-component regulatory system senX3-regX3 in Mycobacterium tuberculosis. Microbiology (United Kingdom), 2014, 160, 1125-1133.	0.7	18
74	Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. Journal of Antimicrobial Chemotherapy, 2014, 69, 2453-2457.	1.3	93
75	Deficiency of Double-Strand DNA Break Repair Does Not Impair Mycobacterium tuberculosis Virulence in Multiple Animal Models of Infection. Infection and Immunity, 2014, 82, 3177-3185.	1.0	17
76	Characterization of a Novel Necrotic Granuloma Model of Latent Tuberculosis Infection and Reactivation in Mice. American Journal of Pathology, 2014, 184, 2045-2055.	1.9	50
77	Future target-based drug discovery for tuberculosis?. Tuberculosis, 2014, 94, 551-556.	0.8	43
78	Thioridazine for treatment of tuberculosis: Promises and pitfalls. Tuberculosis, 2014, 94, 708-711.	0.8	9
79	Latent Tuberculosis Infection: Myths, Models, and Molecular Mechanisms. Microbiology and Molecular Biology Reviews, 2014, 78, 343-371.	2.9	199
80	Reduced Emergence of Isoniazid Resistance with Concurrent Use of Thioridazine against Acute Murine Tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 4048-4053.	1.4	35
81	Sterilizing Activity of Thioridazine in Combination with the First-Line Regimen against Acute Murine Tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 5567-5569.	1.4	20
82	Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs. MBio, $2014, 5, \ldots$	1.8	21
83	Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell Communication and Signaling, 2013, 11, 16.	2.7	37
84	Application of ¹ H NMR Spectroscopy-Based Metabolomics to Sera of Tuberculosis Patients. Journal of Proteome Research, 2013, 12, 4642-4649.	1.8	79
85	Multidrug-Resistant Tuberculosis in Panama Is Driven by Clonal Expansion of a Multidrug-Resistant Mycobacterium tuberculosis Strain Related to the KZN Extensively Drug-Resistant M. tuberculosis Strain from South Africa. Journal of Clinical Microbiology, 2013, 51, 3277-3285.	1.8	41
86	The Polyphosphate Kinase Gene <i>ppk2</i> Is Required for Mycobacterium tuberculosis Inorganic Polyphosphate Regulation and Virulence. MBio, 2013, 4, e00039-13.	1.8	64
87	Rv1894c Is a Novel Hypoxia-Induced Nitronate Monooxygenase Required for Mycobacterium tuberculosis Virulence. Journal of Infectious Diseases, 2013, 207, 1525-1534.	1.9	11
88	Reply to "Contradictory Results with High-Dosage Rifamycin in Mice and Humans― Antimicrobial Agents and Chemotherapy, 2013, 57, 1104-1105.	1.4	3
89	Potent Rifamycin-Sparing Regimen Cures Guinea Pig Tuberculosis as Rapidly as the Standard Regimen. Antimicrobial Agents and Chemotherapy, 2013, 57, 3910-3916.	1.4	29
90	Preliminary Pharmacokinetic Study of Repeated Doses of Rifampin and Rifapentine in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2013, 57, 1535-1537.	1.4	13

#	Article	IF	CITATIONS
91	Thioridazine lacks bactericidal activity in an animal model of extracellular tuberculosis. Journal of Antimicrobial Chemotherapy, 2013, 68, 1327-1330.	1.3	18
92	Vaccination with Recombinant Mycobacterium tuberculosis PknD Attenuates Bacterial Dissemination to the Brain in Guinea Pigs. PLoS ONE, 2013, 8, e66310.	1.1	45
93	Tuberculosis chemotherapy: Present situation, possible solutions, and progress towards a TB-free world. Indian Journal of Medical Microbiology, 2012, 30, 261-263.	0.3	9
94	Rifapentine Is Not More Active than Rifampin against Chronic Tuberculosis in Guinea Pigs. Antimicrobial Agents and Chemotherapy, 2012, 56, 3726-3731.	1.4	34
95	Upregulation of the Phthiocerol Dimycocerosate Biosynthetic Pathway by Rifampin-Resistant, <i>rpoB</i> Mutant Mycobacterium tuberculosis. Journal of Bacteriology, 2012, 194, 6441-6452.	1.0	80
96	Dose-Ranging Comparison of Rifampin and Rifapentine in Two Pathologically Distinct Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 4331-4340.	1.4	142
97	Exosomes Isolated from Mycobacteria-Infected Mice or Cultured Macrophages Can Recruit and Activate Immune Cells In Vitro and In Vivo. Journal of Immunology, 2012, 189, 777-785.	0.4	156
98	Use of Multiplex Allele-Specific Polymerase Chain Reaction (MAS-PCR) to Detect Multidrug-Resistant Tuberculosis in Panama. PLoS ONE, 2012, 7, e40456.	1.1	23
99	Mycobacterium tuberculosis Complex Enhances Susceptibility of CD4 T Cells to HIV through a TLR2-Mediated Pathway. PLoS ONE, 2012, 7, e41093.	1.1	22
100	The Role of the Novel Exopolyphosphatase MT0516 in Mycobacterium tuberculosis Drug Tolerance and Persistence. PLoS ONE, 2011, 6, e28076.	1.1	71
101	Local Ischemia and Increased Expression of Vascular Endothelial Growth Factor Following Ocular Dissemination of Mycobacterium tuberculosis. PLoS ONE, 2011, 6, e28383.	1.1	48
102	Strain-dependent CNS dissemination in guinea pigs after Mycobacterium tuberculosis aerosol challenge. Tuberculosis, 2011, 91, 386-389.	0.8	15
103	Characterization of a Novel Heat Shock Protein (Hsp22.5) Involved in the Pathogenesis of Mycobacterium tuberculosis. Journal of Bacteriology, 2011, 193, 3497-3505.	1.0	10
104	Effectiveness of tuberculosis chemotherapy correlates with resistance to Mycobacterium tuberculosis infection in animal models. Journal of Antimicrobial Chemotherapy, 2011, 66, 1560-1566.	1.3	21
105	Dose-Dependent Activity of Pyrazinamide in Animal Models of Intracellular and Extracellular Tuberculosis Infections. Antimicrobial Agents and Chemotherapy, 2011, 55, 1527-1532.	1.4	54
106	New Patentable Use of an Old Neuroleptic Compound Thioridazine to Combat Tuberculosis: A Gene Regulation Perspective. Recent Patents on Anti-infective Drug Discovery, 2011, 6, 128-138.	0.5	27
107	The Impact of Mouse Passaging of Mycobacterium tuberculosis Strains prior to Virulence Testing in the Mouse and Guinea Pig Aerosol Models. PLoS ONE, 2010, 5, e10289.	1.1	15
108	The potent bactericidal activity of streptomycin in the guinea pig model of tuberculosis ceases due to the presence of persisters. Journal of Antimicrobial Chemotherapy, 2010, 65, 2172-2175.	1.3	14

#	Article	IF	CITATIONS
109	Comparison of the 'Denver regimen' against acute tuberculosis in the mouse and guinea pig. Journal of Antimicrobial Chemotherapy, 2010, 65, 729-734.	1.3	49
110	The Stringent Response Is Required for Full Virulence of Mycobacterium tuberculosisin Guinea Pigs. Journal of Infectious Diseases, 2010, 202, 1397-1404.	1.9	90
111	Intraocular Tuberculosis. Ocular Immunology and Inflammation, 2010, 18, 281-291.	1.0	48
112	Experimental Ocular Tuberculosis in Guinea Pigs. JAMA Ophthalmology, 2009, 127, 1162.	2.6	43
113	Role of the <i>dosR</i> - <i>dosS</i> Two-Component Regulatory System in <i>Mycobacterium tuberculosis</i> Virulence in Three Animal Models. Infection and Immunity, 2009, 77, 1230-1237.	1.0	150
114	Phosphate Depletion: A Novel Trigger for <i>Mycobacterium tuberculosis</i> Persistence. Journal of Infectious Diseases, 2009, 200, 1126-1135.	1.9	136
115	Biphasic Kill Curve of Isoniazid Reveals the Presence of Drugâ€Tolerant, Not Drugâ€Resistant, <i>Mycobacterium tuberculosis</i> in the Guinea Pig. Journal of Infectious Diseases, 2009, 200, 1136-1143.	1.9	103
116	Mechanisms of Action and Resistance of Antimycobacterial Agents., 2009,, 271-291.		14
117	Interferon- \hat{l}^3 Release Assays in the Diagnosis of Tuberculous Uveitis. American Journal of Ophthalmology, 2008, 146, 486-488.	1.7	66
118	Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2008, 61, 323-331.	1.3	95
119	Metronidazole Lacks Activity againstMycobacterium tuberculosisin an In Vivo Hypoxic Granuloma Model of Latency. Journal of Infectious Diseases, 2008, 198, 275-283.	1.9	78
120	Roles of SigB and SigF in the <i>Mycobacterium tuberculosis </i> Sigma Factor Network. Journal of Bacteriology, 2008, 190, 699-707.	1.0	87
121	Mycobacterium tuberculosis SigF Regulates Genes Encoding Cell Wall-Associated Proteins and Directly Regulates the Transcriptional Regulatory Gene phoY1. Journal of Bacteriology, 2007, 189, 4234-4242.	1.0	58
122	Accelerated Detection of Mycobacterium tuberculosis Genes Essential for Bacterial Survival in Guinea Pigs, Compared with Mice. Journal of Infectious Diseases, 2007, 195, 1634-1642.	1.9	43
123	Paraplegia caused by invasive spinal aspergillosis. Neurology, 2007, 68, 158-158.	1.5	4
124	U.S. medical resident familiarity with national tuberculosis guidelines. BMC Infectious Diseases, 2007, 7, 89.	1.3	13
125	Tuberculosis-associated haemophagocytic syndrome. Lancet Infectious Diseases, The, 2006, 6, 447-454.	4.6	154
126	Chronic Q Fever in the United States. Journal of Clinical Microbiology, 2006, 44, 2283-2287.	1.8	66

#	Article	IF	CITATIONS
127	Non-tuberculous mycobacteria in HIV-infected patients: geographic, behavioural, and immunological factors – Authors' reply. Lancet Infectious Diseases, The, 2005, 5, 396.	4.6	1
128	Dormancy Phenotype Displayed by Extracellular Mycobacterium tuberculosis within Artificial Granulomas in Mice. Journal of Experimental Medicine, 2004, 200, 647-657.	4.2	246
129	Mycobacterium tuberculosiscell envelope lipids and the host immune response. Cellular Microbiology, 2004, 6, 105-116.	1.1	127
130	Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infectious Diseases, The, 2004, 4, 557-565.	4.6	190
131	Postoperative Pneumococcal Cellulitis in Systemic Lupus Erythematosus. Scandinavian Journal of Infectious Diseases, 2003, 35, 141-143.	1.5	5
132	The role of conjunctival biopsy in the diagnosis of Wegener's granulomatosis: a case report. Canadian Journal of Ophthalmology, 2002, 37, 179-181.	0.4	1
133	Waterhouse-Friderichsen Syndrome After Infection With Group A Streptococcus. Mayo Clinic Proceedings, 2001, 76, 1167-1170.	1.4	33
134	Ulcerating subcutaneous nodules and advanced renal failure: is it time for a new liver?. Nephrology Dialysis Transplantation, 2001, 16, 2095-2096.	0.4	3