Jiujun Zhang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7821815/jiujun-zhang-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

250	36,488	74	190
papers	citations	h-index	g-index
259	40,215 ext. citations	11.1	7.66
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
250	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 2637-2671	13	3
249	High-efficient carbon dioxide-to-formic acid conversion on bimetallic PbIn alloy catalysts with tuned composition and morphology <i>Chemosphere</i> , 2022 , 293, 133595	8.4	1
248	Single-atom alloy with Pt-Co dual sites as an efficient electrocatalyst for oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2022 , 306, 121112	21.8	2
247	Insight into the origin of pseudo peaks decoded by the distribution of relaxation times/ differential capacity method for electrochemical impedance spectroscopy. <i>Journal of Electroanalytical Chemistry</i> , 2022 , 910, 116176	4.1	3
246	Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 core-shell nanorod arrays. <i>Chemical Engineering Journal</i> , 2021 , 404, 126458	14.7	26
245	Research advances in biomass-derived nanostructured carbons and their composite materials for electrochemical energy technologies. <i>Progress in Materials Science</i> , 2021 , 118, 100770	42.2	21
244	High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. <i>Chemical Society Reviews</i> , 2021 , 50, 1138-1187	58.5	93
243	Nanoporous structured Sn-MWCNT/Cu electrodes fabricated by electrodeposition@hemical dezincification for catalytic CO2 reduction. <i>International Journal of Energy Research</i> , 2021 , 45, 6273-628	34 ^{4.5}	1
242	Metal chalcogenide-associated catalysts enabling CO2 electroreduction to produce low-carbon fuels for energy storage and emission reduction: catalyst structure, morphology, performance, and mechanism. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 2526-2559	13	8
241	An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. <i>Materials Reports Energy</i> , 2021 , 1, 100002		4
240	Advanced Noncarbon Materials as Catalyst Supports and Non-noble Electrocatalysts for Fuel Cells and Metal Air Batteries. <i>Electrochemical Energy Reviews</i> , 2021 , 4, 336-381	29.3	30
239	Recent research progress in PEM fuel cell electrocatalyst degradation and mitigation strategies. <i>EnergyChem</i> , 2021 , 3, 100061	36.9	3
238	Catalytic redox mediators for non-aqueous Li-O2 battery. <i>Energy Storage Materials</i> , 2021 , 43, 97-119	19.4	5
237	Electrochemical reduction of carbon dioxide (CO2): bismuth-based electrocatalysts. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13770-13803	13	13
236	Recent progress in the use of electrochemical impedance spectroscopy for the measurement, monitoring, diagnosis and optimization of proton exchange membrane fuel cell performance. <i>Journal of Power Sources</i> , 2020 , 468, 228361	8.9	52
235	Pyrolyzed Co-Nx/C Electrocatalysts Supported on Different Carbon Materials for Oxygen Reduction Reaction in Neutral Solution. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 024509	3.9	3
234	Supported dual-atom catalysts: Preparation, characterization, and potential applications. <i>Chinese Journal of Catalysis</i> , 2020 , 41, 783-798	11.3	80

(2018-2020)

233	Multi-dimensional materials with layered structures for supercapacitors: Advanced synthesis, supercapacitor performance and functional mechanism. <i>Nano Energy</i> , 2020 , 78, 105193	17.1	21
232	Peony pollen derived nitrogen-doped activated carbon for supercapacitor application. <i>Chinese Chemical Letters</i> , 2020 , 31, 1644-1647	8.1	8
231	Novel Bi, BiSn, Bi2Sn, Bi3Sn, and Bi4Sn Catalysts for Efficient Electroreduction of CO2 to Formic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 6806-6814	3.9	14
230	Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 518-538	29.3	103
229	Reduced Graphene Oxide-Supported Nickel(II)-Bis(1,10-Phenanthroline) Complex as a Highly Active Electrocatalyst for Ethanol Oxidation Reaction. <i>Electrocatalysis</i> , 2019 , 10, 560-572	2.7	6
228	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. <i>Energy and Environmental Science</i> , 2019 , 12, 2890-2923	35.4	208
227	A fast measurement of Warburg-like impedance spectra with Morlet wavelet transform for electrochemical energy devices. <i>Electrochimica Acta</i> , 2019 , 322, 134760	6.7	13
226	Hybrid energy storage devices: Advanced electrode materials and matching principles. <i>Energy Storage Materials</i> , 2019 , 21, 22-40	19.4	105
225	Novel electrochemical half-cell design and fabrication for performance analysis of metal-air battery air-cathodes. <i>International Journal of Green Energy</i> , 2019 , 16, 236-241	3	5
224	Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction. <i>Electrochimica Acta</i> , 2018 , 262, 326-336	6.7	78
223	High performing and cost-effective metal/metal oxide/metal alloy catalysts/electrodes for low temperature CO2 electroreduction. <i>Catalysis Today</i> , 2018 , 318, 15-22	5.3	10
222	Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes. <i>Journal of CO2 Utilization</i> , 2018 , 27, 48-59	7.6	38
221	Multi-scale impedance model for supercapacitor porous electrodes: Theoretical prediction and experimental validation. <i>Journal of Power Sources</i> , 2018 , 400, 69-86	8.9	14
220	A review of core-shell nanostructured electrocatalysts for oxygen reduction reaction. <i>Energy Storage Materials</i> , 2018 , 12, 260-276	19.4	70
219	Advanced metal-organic frameworks (MOFs) and their derived electrode materials for supercapacitors. <i>Journal of Power Sources</i> , 2018 , 402, 281-295	8.9	99
218	Novel Cobalt-Doped NiSe Chalcogenides (Co NiSe) as High Active and Stable Electrocatalysts for Hydrogen Evolution Reaction in Electrolysis Water Splitting. <i>ACS Applied Materials & Company: Interfaces</i> , 2018 , 10, 40491-40499	9.5	58
217	Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc batteries. <i>Energy and Environmental Science</i> , 2018 , 11, 3075-3095	35.4	212
216	Recent advancements in the development of bifunctional electrocatalysts for oxygen electrodes in unitized regenerative fuel cells (URFCs). <i>Progress in Materials Science</i> , 2018 , 98, 108-167	42.2	26

1

Fundamentals of Electrochemical Pseudocapacitors **2017**, 99-134

214	Components and Materials for Electrochemical Supercapacitors 2017 , 135-201		
213	Applications of Electrochemical Supercapacitors 2017 , 317-334		1
212	A review of high temperature co-electrolysis of HO and CO to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. <i>Chemical Society Reviews</i> , 2017 , 46, 1427-1463	58.5	332
211	Stainless Steel Electrodes to Determine Biodiesel Content in Petroleum Diesel Fuel by Electrochemical Impedance Spectroscopy. <i>Electroanalysis</i> , 2017 , 29, 814-820	3	3
210	Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells. <i>Advanced Materials</i> , 2017 , 29, 1601741	24	118
209	Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies. <i>Nano Energy</i> , 2017 , 40, 512-539	17.1	143
208	Facile Synthesis of EMnO2 with a 3D Staghorn Coral-like Micro-Structure Assembled by Nano-Rods and Its Application in Electrochemical Supercapacitors. <i>Applied Sciences (Switzerland)</i> , 2017 , 7, 511	2.6	4
207	Facile synthesis of silver@carbon nanocable-supported platinum nanoparticles as high-performing electrocatalysts for glycerol oxidation in direct glycerol fuel cells. <i>Green Chemistry</i> , 2016 , 18, 386-391	10	16
206	Rational Design and Synthesis of SnOx Electrocatalysts with Coralline Structure for Highly Improved Aqueous CO2 Reduction to Formate. <i>ChemElectroChem</i> , 2016 , 3, 1618-1628	4.3	52
205	Novel nanowire-structured polypyrrole-cobalt composite as efficient catalyst for oxygen reduction reaction. <i>Scientific Reports</i> , 2016 , 6, 20005	4.9	15
204	Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. <i>Scientific Reports</i> , 2016 , 6, 33590	4.9	46
203	Ionic liquids as electrolytes for non-aqueous solutions electrochemical supercapacitors in a temperature range of 20 IICBO IIC. <i>Journal of Power Sources</i> , 2016 , 324, 615-624	8.9	26
202	Template-free synthesis of three-dimensional nanoporous N-doped graphene for high performance fuel cell oxygen reduction reaction in alkaline media. <i>Applied Energy</i> , 2016 , 175, 405-413	10.7	34
201	PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. <i>Coordination Chemistry Reviews</i> , 2016 , 315, 153-177	23.2	87
200	A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. <i>Green Chemistry</i> , 2016 , 18, 2699	- 27 09	61
199	Facile synthesis of NiCo2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable ZnBir batteries. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 9211-9218	6.7	61
198	Novel hierarchical SnO2 microsphere catalyst coated on gas diffusion electrode for enhancing energy efficiency of CO2 reduction to formate fuel. <i>Applied Energy</i> , 2016 , 175, 536-544	10.7	71

(2014-2016)

197	Impedance Characteristics and Diagnoses of Automotive Lithium-Ion Batteries at 7.5% to 93.0% State of Charge. <i>Electrochimica Acta</i> , 2016 , 219, 751-765	6.7	33
196	Fundamentals of Electrochemical Supercapacitors. <i>Electrochemical Energy Storage and Conversion</i> , 2016 , 1-30		3
195	Compatibility of Electrolytes with Inactive Components of Electrochemical Supercapacitors. <i>Electrochemical Energy Storage and Conversion</i> , 2016 , 255-274		2
194	A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. <i>Journal of Power Sources</i> , 2015 , 293, 946-975	8.9	59
193	Synergistic electrocatalysis of N,N?-bis(salicylidene)-ethylenediamine-cobalt(II) and conductive carbon black (BP) for high efficient CO2 electroreduction. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 3355-3363	2.6	5
192	Tuning and understanding the supercapacitance of heteroatom-doped graphene. <i>Energy Storage Materials</i> , 2015 , 1, 103-111	19.4	41
191	Supercapacitors' Applications. Electrochemical Energy Storage and Conversion, 2015, 479-492		2
190	Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage. <i>Scientific Reports</i> , 2015 , 5, 15252	4.9	13
189	A review of cathode materials and structures for rechargeable lithium ir batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 2144-2198	35.4	338
188	A review of electrolyte materials and compositions for electrochemical supercapacitors. <i>Chemical Society Reviews</i> , 2015 , 44, 7484-539	58.5	2002
187	Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. <i>RSC Advances</i> , 2015 , 5, 6195-6206	3.7	55
186	Imidazolium-Functionalized Anion Exchange Polymer Electrolytes with High Tensile Strength and Stability for Alkaline Membrane Fuel Cells. <i>Electrochimica Acta</i> , 2015 , 177, 201-208	6.7	19
185	Preparation of Nitrogen and Sulfur dual-doped Mesoporous Carbon for Supercapacitor Electrodes with Long Cycle Stability. <i>Electrochimica Acta</i> , 2015 , 177, 327-334	6.7	53
184	Highly active Pt-on-Au catalysts for methanol oxidation in alkaline media involving a synergistic interaction between Pt and Au. <i>Electrochimica Acta</i> , 2014 , 123, 309-316	6.7	21
183	Development and Simulation of Sulfur-doped Graphene Supported Platinum with Exemplary Stability and Activity Towards Oxygen Reduction. <i>Advanced Functional Materials</i> , 2014 , 24, 4325-4336	15.6	184
182	Kinetics of oxygen reduction reaction on three different Pt surfaces of Pt/C catalyst analyzed by rotating ring-disk electrode in acidic solution. <i>Journal of Power Sources</i> , 2014 , 255, 242-250	8.9	34
181	A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. <i>Advanced Energy Materials</i> , 2014 , 4, 1301523	21.8	365
180	A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. <i>Chemical Society Reviews</i> , 2014 , 43, 631-75	58.5	1890

179	Formation of Cu nanostructured electrode surfaces by an annealing electroreduction procedure to achieve high-efficiency CO2 electroreduction. <i>Electrochemistry Communications</i> , 2014 , 38, 8-11	5.1	69
178	Ta and Nb co-doped TiO2 and its carbon-hybrid materials for supporting Pt P d alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 12681-12685	13	40
177	Electrocatalytic activity and stability of carbon nanotubes-supported Pt-on-Au, Pd-on-Au, Pt-on-Pd, and Pd-on-Pt catalysts for methanol oxidation reaction. <i>Electrochimica Acta</i> , 2014 , 148, 1-7	6.7	14
176	Controllable hydrothermal synthesis of Cu-doped EMnO2 films with different morphologies for energy storage and conversion using supercapacitors. <i>Applied Energy</i> , 2014 , 134, 439-445	10.7	80
175	Transition Metal Chalcogenides for Oxygen Reduction Electrocatalysts in PEM Fuel Cells 2014 , 157-182		6
174	Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt. <i>Journal of Power Sources</i> , 2014 , 266, 88-98	8.9	35
173	Experimental and modeling study on charge storage/transfer mechanism of graphene-based supercapacitors. <i>Journal of Power Sources</i> , 2014 , 268, 604-609	8.9	11
172	A Novel Half-Cell Design and Fabrication for an In-Situ Evaluation of Pem Fuel Cell Electrocatalysts. <i>International Journal of Green Energy</i> , 2014 , 11, 1-11	3	8
171	Electrocatalysts and Catalyst Layers for Oxygen Reduction Reaction 2014, 67-132		12
170	Electrochemical Oxygen Reduction Reaction 2014 , 133-170		11
169	Applications of RDE and RRDE Methods in Oxygen Reduction Reaction 2014, 231-277		6
168	Rotating Disk Electrode Method 2014 , 171-198		12
167	N,N?-Bis(salicylidene)ethylenediamine as a nitrogen-rich precursor to synthesize electrocatalysts with high methanol-tolerance for polymer electrolyte membrane fuel cell oxygen reduction reaction. <i>Journal of Power Sources</i> , 2014 , 260, 349-356	8.9	7
166	Non-noble FeNX electrocatalysts supported on the reduced graphene oxide for oxygen reduction reaction. <i>Carbon</i> , 2014 , 76, 386-400	10.4	69
165	Experimental identification of the active sites in pyrolyzed carbon-supported cobaltpolypyrroled-toluenesulfinic acid as electrocatalysts for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2014 , 255, 76-84	8.9	39
164	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. <i>Energy and Environmental Science</i> , 2014 , 7, 1564	35.4	860
163	Synthesis of novel mesoporous carbon spheres and their supported Fe-based electrocatalysts for PEM fuel cell oxygen reduction reaction. <i>Electrochimica Acta</i> , 2013 , 108, 480-485	6.7	37
162	Hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) for alkaline fuel cell applications: Effect of molecular weight. <i>Electrochimica Acta</i> , 2013 , 111, 351-358	6.7	24

(2013-2013)

161	Mesoporous carbons supported non-noble metal Fell X electrocatalysts for PEM fuel cell oxygen reduction reaction. <i>Journal of Applied Electrochemistry</i> , 2013 , 43, 159-169	2.6	71
160	Understanding the effects of backpressure on PEM fuel cell reactions and performance. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 688, 130-136	4.1	36
159	Effect of template size on the synthesis of mesoporous carbon spheres and their supported Fe-based ORR electrocatalysts. <i>Electrochimica Acta</i> , 2013 , 108, 814-819	6.7	24
158	High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2013 , 231, 91-96	8.9	30
157	Anion conducting poly(vinyl alcohol)/poly(diallyldimethylammonium chloride) membranes with high durable alkaline stability for polymer electrolyte membrane fuel cells. <i>Journal of Power Sources</i> , 2013 , 237, 1-4	8.9	34
156	Electrochemical Half-Cells for Evaluating PEM Fuel Cell Catalysts and Catalyst Layers 2013 , 337-361		1
155	Synthesis, characterization and evaluation of unsupported porous NiS2 sub-micrometer spheres as a potential hydrodesulfurization catalyst. <i>Applied Catalysis A: General</i> , 2013 , 450, 230-236	5.1	24
154	Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent. <i>Electrochimica Acta</i> , 2013 , 90, 542-549	6.7	61
153	Fuel Cell Open Circuit Voltage 2013 , 187-200		1
152	Techniques for PEM Fuel Cell Testing and Diagnosis 2013 , 81-119		14
152 151	Techniques for PEM Fuel Cell Testing and Diagnosis 2013 , 81-119 The Effects of Temperature on PEM Fuel Cell Kinetics and Performance 2013 , 121-141		14 9
		58.5	
151	The Effects of Temperature on PEM Fuel Cell Kinetics and Performance 2013 , 121-141 Alkaline polymer electrolyte membranes for fuel cell applications. <i>Chemical Society Reviews</i> , 2013 ,	58.5	9
151	The Effects of Temperature on PEM Fuel Cell Kinetics and Performance 2013, 121-141 Alkaline polymer electrolyte membranes for fuel cell applications. <i>Chemical Society Reviews</i> , 2013, 42, 5768-87 Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal		9 473
151 150 149	The Effects of Temperature on PEM Fuel Cell Kinetics and Performance 2013, 121-141 Alkaline polymer electrolyte membranes for fuel cell applications. <i>Chemical Society Reviews</i> , 2013, 42, 5768-87 Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts. <i>Lecture Notes in Energy</i> , 2013, 339-373 Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical	0.4	9 473
151 150 149 148	The Effects of Temperature on PEM Fuel Cell Kinetics and Performance 2013, 121-141 Alkaline polymer electrolyte membranes for fuel cell applications. <i>Chemical Society Reviews</i> , 2013, 42, 5768-87 Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts. <i>Lecture Notes in Energy</i> , 2013, 339-373 Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical supercapacitors. <i>Ionics</i> , 2013, 19, 689-695	0.4	9 473 1 23
151 150 149 148	The Effects of Temperature on PEM Fuel Cell Kinetics and Performance 2013, 121-141 Alkaline polymer electrolyte membranes for fuel cell applications. <i>Chemical Society Reviews</i> , 2013, 42, 5768-87 Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts. <i>Lecture Notes in Energy</i> , 2013, 339-373 Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical supercapacitors. <i>Ionics</i> , 2013, 19, 689-695 PEM Fuel Cell Fundamentals 2013, 1-42	0.4	9 473 1 23

143	Pressure Effects on PEM Fuel Cell Performance 2013 , 225-241		4
142	High-Temperature PEM Fuel Cells 2013 , 243-282		2
141	Ti4O7 supported Ru@Pt coreBhell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. <i>Applied Energy</i> , 2013 , 103, 507-513	10.7	39
140	Nanomaterials-supported Pt catalysts for proton exchange membrane fuel cells. <i>Wiley Interdisciplinary Reviews: Energy and Environment</i> , 2013 , 2, 31-51	4.7	23
139	Synthesis of Pd and Nbdoped TiO2 composite supports and their corresponding PtPd alloy catalysts by a two-step procedure for the oxygen reduction reaction. <i>Journal of Power Sources</i> , 2013 , 221, 232-241	8.9	23
138	Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction. <i>Electrochimica Acta</i> , 2012 , 59, 538-547	6.7	72
137	Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. <i>Electrochimica Acta</i> , 2012 , 60, 428-436	6.7	146
136	Nanocrystalline tungsten carbide (WC) synthesis/characterization and its possible application as a PEM fuel cell catalyst support. <i>Electrochimica Acta</i> , 2012 , 61, 198-206	6.7	50
135	Titanium carbide and its core-shelled derivative TiC@TiO2 as catalyst supports for proton exchange membrane fuel cells. <i>Electrochimica Acta</i> , 2012 , 69, 397-405	6.7	100
134	Synthesis and characterization of Nb-TiO2 mesoporous microsphere and nanofiber supported Pt catalysts for high temperature PEM fuel cells. <i>Electrochimica Acta</i> , 2012 , 77, 1-7	6.7	46
133	CarbonNb0.07Ti0.93O2 composite supported PtPd electrocatalysts for PEM fuel cell oxygen reduction reaction. <i>Electrochimica Acta</i> , 2012 , 75, 220-228	6.7	32
132	Effects of synthesis condition on formation of desired crystal structures of doped-TiO2/carbon composite supports for ORR electrocatalysts. <i>Electrochimica Acta</i> , 2012 , 77, 225-231	6.7	16
131	Application of a composite structure of carbon nanoparticles and NbIIiO2 nanofibers as electrocatalyst support for PEM fuel cells. <i>Journal of Power Sources</i> , 2012 , 210, 15-20	8.9	25
130	A review of electrode materials for electrochemical supercapacitors. <i>Chemical Society Reviews</i> , 2012 , 41, 797-828	58.5	6816
129	Using pyridine as nitrogen-rich precursor to synthesize Co-N-S/C non-noble metal electrocatalysts for oxygen reduction reaction. <i>Applied Catalysis B: Environmental</i> , 2012 , 125, 197-205	21.8	49
128	Nickel and cobalt oxide composite as a possible electrode material for electrochemical supercapacitors. <i>Journal of Power Sources</i> , 2012 , 217, 554-561	8.9	40
127	Nb-doped TiO2/carbon composite supports synthesized by ultrasonic spray pyrolysis for proton exchange membrane (PEM) fuel cell catalysts. <i>Journal of Power Sources</i> , 2012 , 220, 1-9	8.9	20
126	Polymer Electrolyte Membrane Fuel Cells 2012 , 601-670		7

Direct Methanol Fuel Cells 2012, 701-727

5

124	Highly active electrocatalysts for oxygen reduction from carbon-supported copper-phthalocyanine synthesized by high temperature treatment. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14103-	14713	73
123	Nano-architecture and material designs for water splitting photoelectrodes. <i>Chemical Society Reviews</i> , 2012 , 41, 5654-71	58.5	429
122	Synthesis of hierarchical structured porous MoS2/SiO2 microspheres by ultrasonic spray pyrolysis. <i>Canadian Journal of Chemical Engineering</i> , 2012 , 90, 330-335	2.3	14
121	Synthesis of conductive rutile-phased Nb0.06Ti0.94O2 and its supported Pt electrocatalysts (Pt/Nb0.06Ti0.94O2) for the oxygen reduction reaction. <i>Dalton Transactions</i> , 2012 , 41, 1187-94	4.3	37
120	Anodic stripping voltammetry coupled with design of experiments for simultaneous determination of Zn+2, Cu+2, Pb+2, and Cd+2 in gasoline. <i>Fuel</i> , 2012 , 91, 26-32	7.1	21
119	A review of electrochemical desulfurization technologies for fossil fuels. <i>Fuel Processing Technology</i> , 2012 , 98, 30-38	7.2	81
118	Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. <i>Chemical Reviews</i> , 2011 , 111, 7625-51	68.1	659
117	Nitrogen-doped graphene nanosheet-supported non-precious iron nitride nanoparticles as an efficient electrocatalyst for oxygen reduction. <i>RSC Advances</i> , 2011 , 1, 1349	3.7	86
116	The {001} facets-dependent high photoactivity of BiOCl nanosheets. <i>Chemical Communications</i> , 2011 , 47, 6951-3	5.8	530
115	Formic Acid Tolerant Ir-Based Electrocatalysts for Oxygen Reduction Reaction. <i>International Journal of Green Energy</i> , 2011 , 8, 295-305	3	6
114	Accelerated Lifetime Testing for Proton Exchange Membrane Fuel Cells Using Extremely High Temperature and Unusually High Load. <i>Journal of Fuel Cell Science and Technology</i> , 2011 , 8,		13
113	A novel CO-tolerant PtRu corellhell structured electrocatalyst with Ru rich in core and Pt rich in shell for hydrogen oxidation reaction and its implication in proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2011 , 196, 9117-9123	8.9	38
112	Carbon incorporated FeN/C electrocatalyst for oxygen reduction enhancement in direct methanol fuel cells: X-ray absorption approach to local structures. <i>Electrochimica Acta</i> , 2011 , 56, 8734-8738	6.7	25
111	A review on non-precious metal electrocatalysts for PEM fuel cells. <i>Energy and Environmental Science</i> , 2011 , 4, 3167	35.4	1495
110	Carbon-Supported FeNx Catalysts Synthesized by Pyrolysis of the Fe(II)0,3,5,6-Tetra(2-pyridyl)pyrazine Complex: Structure, Electrochemical Properties, and Oxygen Reduction Reaction Activity. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12929-12940	3.8	82
109	Theoretical Study of Possible Active Site Structures in Cobalt- Polypyrrole Catalysts for Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16672-16680	3.8	65
108	FeNx/C electrocatalysts synthesized by pyrolysis of Fe(II)2,3,5,6-tetra(2-pyridyl)pyrazine complex for PEM fuel cell oxygen reduction reaction. <i>Electrochimica Acta</i> , 2011 , 56, 4744-4752	6.7	49

107	Optimizing catalyst loading in non-noble metal electrocatalyst layer to improve oxygen reduction reaction activity. <i>Electrochemistry Communications</i> , 2011 , 13, 447-449	5.1	26
106	Improved ORR activity of non-noble metal electrocatalysts by increasing ligand and metal ratio in synthetic complex precursors. <i>Electrochimica Acta</i> , 2011 , 56, 5488-5492	6.7	19
105	Electrocatalytic Activities of La0.6Ca0.4CoO3 and La0.6Ca0.4CoO3-Carbon Composites Toward the Oxygen Reduction Reaction in Concentrated Alkaline Electrolytes. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A597	3.9	60
104	Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. <i>Nature Chemistry</i> , 2010 , 2, 286-93	17.6	405
103	Effects of Hardware Design and Operation Conditions on PEM Fuel Cell Water Flooding. <i>International Journal of Green Energy</i> , 2010 , 7, 461-474	3	29
102	Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. <i>Chemical Society Reviews</i> , 2010 , 39, 2184-202	58.5	926
101	Electronic Conductivity and Stability of Doped Titania (Ti1kMXO2, M = Nb, Ru, and Ta) Density Functional Theory-Based Comparison. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13162-13167	3.8	22
100	Heat-treated cobalt E ripyridyl triazine (Co I IPTZ) electrocatalysts for oxygen reduction reaction in acidic medium. <i>Electrochimica Acta</i> , 2010 , 55, 4403-4411	6.7	63
99	Synthesis of carbon-supported binary FeCoN non-noble metal electrocatalysts for the oxygen reduction reaction. <i>Electrochimica Acta</i> , 2010 , 55, 7346-7353	6.7	75
98	Pt nanoparticles deposited on TiO2 based nanofibers: Electrochemical stability and oxygen reduction activity. <i>Journal of Power Sources</i> , 2010 , 195, 3105-3110	8.9	81
97	Durability of PEM fuel cell cathode in the presence of Fe3+ and Al3+. <i>Journal of Power Sources</i> , 2010 , 195, 8089-8093	8.9	51
96	Proton conductivity enhancement by nanostructural control of sulphonated poly (ether ether ketone) membranes. <i>International Journal of Hydrogen Energy</i> , 2010 , 35, 8337-8342	6.7	11
95	PEM fuel cell cathode contamination in the presence of cobalt ion (Co2+). <i>Electrochimica Acta</i> , 2010 , 55, 5823-5830	6.7	28
94	Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2. <i>Electrochimica Acta</i> , 2010 , 55, 8365-8370	6.7	44
93	Effect of Co2+ on oxygen reduction reaction catalyzed by Pt catalyst, and its implications for fuel cell contamination. <i>Electrochimica Acta</i> , 2010 , 55, 2622-2628	6.7	12
92	Magneli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. <i>Electrochimica Acta</i> , 2010 , 55, 5891-5898	6.7	123
91	Effect of Operating Backpressure on PEM Fuel Cell Performance. ECS Transactions, 2009, 19, 65-76	1	21
90	PEM Fuel Cell Contamination: Effects of Operating Conditions on Toluene-Induced Cathode Degradation. <i>Journal of the Electrochemical Society</i> , 2009 , 156, B252	3.9	22

(2008-2009)

89	Implantation of Nafion□ ionomer into polyvinyl alcohol/chitosan composites to form novel proton-conducting membranes for direct methanol fuel cells. <i>Journal of Power Sources</i> , 2009 , 194, 730-	738	36
88	Facile synthesis, spectroscopy and electrochemical activity of two substituted iron phthalocyanines as oxygen reduction catalysts in an acidic environment. <i>Electrochimica Acta</i> , 2009 , 54, 3098-3102	6.7	45
87	Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 55	-64 ⁶	44
86	A novel single electrode supported direct methanol fuel cell. <i>Electrochemistry Communications</i> , 2009 , 11, 1530-1534	5.1	12
85	Oxygen reduction reaction (ORR) catalyzed by carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts. <i>Electrochimica Acta</i> , 2009 , 54, 4704-4711	6.7	263
84	Synthesis of a highly active carbon-supported Ir\(\mathbf{V}\)/C catalyst for the hydrogen oxidation reaction in PEMFC. <i>Electrochimica Acta</i> , 2009 , 54, 5614-5620	6.7	18
83	Fe loading of a carbon-supported FeN electrocatalyst and its effect on the oxygen reduction reaction. <i>Electrochimica Acta</i> , 2009 , 54, 6631-6636	6.7	66
82	A general model for air-side proton exchange membrane fuel cell contamination. <i>Journal of Power Sources</i> , 2009 , 186, 435-445	8.9	17
81	Control of variable power conditions for a membraneless direct methanol fuel cell. <i>Journal of Power Sources</i> , 2009 , 194, 991-996	8.9	20
80	EIS-assisted performance analysis of non-noble metal electrocatalyst (FeN/C)-based PEM fuel cells in the temperature range of 23B0°C. <i>Electrochimica Acta</i> , 2009 , 54, 1737-1743	6.7	26
79	High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation. <i>Electrochimica Acta</i> , 2009 , 54, 7274-7279	6.7	41
78	Ultrasonic spray pyrolyzed iron-polypyrrole mesoporous spheres for fuel celloxygen reduction electrocatalysts. <i>Journal of Materials Chemistry</i> , 2009 , 19, 468-470		76
77	Platinum-based Alloy Catalysts for PEM Fuel Cells 2008 , 631-654		10
76	Catalyst Contamination in PEM Fuel Cells 2008 , 331-354		2
75	Non-noble Electrocatalysts for the PEM Fuel Cell Oxygen Reduction Reaction 2008, 715-757		4
74	Electrocatalytic Oxygen Reduction Reaction 2008 , 89-134		188
73	Catalyst Layer/MEA Performance Evaluation 2008 , 965-1002		3
72	Electrocatalytic H2 Oxidation Reaction 2008 , 135-164		6

71	Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. <i>Journal of Power Sources</i> , 2008 , 177, 296-302	8.9	70
70	A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies. <i>Journal of Power Sources</i> , 2008 , 184, 104-119	8.9	1030
69	Electrocatalytic activity and stability of substituted iron phthalocyanines towards oxygen reduction evaluated at different temperatures. <i>Electrochimica Acta</i> , 2008 , 53, 6906-6919	6.7	137
68	A review of water flooding issues in the proton exchange membrane fuel cell. <i>Journal of Power Sources</i> , 2008 , 178, 103-117	8.9	688
67	Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells. <i>Journal of Power Sources</i> , 2008 , 184, 99-103	8.9	36
66	Polymer electrolyte membrane fuel cell contamination: Testing and diagnosis of toluene-induced cathode degradation. <i>Journal of Power Sources</i> , 2008 , 185, 272-279	8.9	40
65	Novel approach to membraneless direct methanol fuel cells using advanced 3D anodes. <i>Electrochimica Acta</i> , 2008 , 53, 6890-6898	6.7	26
64	PEM fuel cell relative humidity (RH) and its effect on performance at high temperatures. <i>Electrochimica Acta</i> , 2008 , 53, 5315-5321	6.7	132
63	A review of FeN/C and CoN/C catalysts for the oxygen reduction reaction. <i>Electrochimica Acta</i> , 2008 , 53, 4937-4951	6.7	938
62	Novel carbon-supported Fe-N electrocatalysts synthesized through heat treatment of iron tripyridyl triazine complexes for the PEM fuel cell oxygen reduction reaction. <i>Electrochimica Acta</i> , 2008 , 53, 7703-7710	6.7	118
61	Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 1735-1746	6.7	229
60	Diagnostic tools in PEM fuel cell research: Part II: Physical/chemical methods. <i>International Journal of Hydrogen Energy</i> , 2008 , 33, 1747-1757	6.7	90
59	Combinatorial Methods for PEM Fuel Cell Electrocatalysts 2008 , 609-630		0
58	High-temperature PEM Fuel Cell Catalysts and Catalyst Layers 2008, 861-888		7
57	Facile Synthesis of Co P t Hollow Sphere Electrocatalyst. <i>Chemistry of Materials</i> , 2007 , 19, 1840-1844	9.6	138
56	Density Functional Theory Study of Transitional Metal Macrocyclic Complexes' Dioxygen-Binding Abilities and Their Catalytic Activities toward Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 7084-7090	3.8	133
55	Ternary non-noble metal chalcogenide (Wtoße) as electrocatalyst for oxygen reduction reaction. <i>Electrochemistry Communications</i> , 2007 , 9, 1704-1708	5.1	73
54	PEM fuel cell reaction kinetics in the temperature range of 23f120fC. <i>Electrochimica Acta</i> , 2007 , 52, 255	2 -2.5 61	136

53	High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. <i>Electrochimica Acta</i> , 2007 , 52, 4532-4538	6.7	111
52	A review of AC impedance modeling and validation in SOFC diagnosis. <i>Electrochimica Acta</i> , 2007 , 52, 81	14 6. 8 10	54 299
51	Low Pt content PtRuIrBn quaternary catalysts for anodic methanol oxidation in DMFC. <i>Electrochemistry Communications</i> , 2007 , 9, 1788-1792	5.1	46
50	The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd I o alloy electrocatalysts. <i>Electrochimica Acta</i> , 2007 , 52, 3088-3094	6.7	169
49	PEM fuel cells operated at 0% relative humidity in the temperature range of 23fl20fc. <i>Electrochimica Acta</i> , 2007 , 52, 5095-5101	6.7	96
48	Effect of synthetic reducing agents on morphology and ORR activity of carbon-supported nano-Pdflo alloy electrocatalysts. <i>Electrochimica Acta</i> , 2007 , 52, 7964-7971	6.7	82
47	A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oyxgen reduction. <i>Journal of Power Sources</i> , 2007 , 165, 108-113	8.9	61
46	A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. <i>Journal of Power Sources</i> , 2007 , 165, 739-756	8.9	728
45	Hydrogen crossover in high-temperature PEM fuel cells. <i>Journal of Power Sources</i> , 2007 , 167, 25-31	8.9	123
44	IrxCo1☑ (x=0.3뎁.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction. <i>Journal of Power Sources</i> , 2007 , 170, 291-296	8.9	70
43	A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. <i>Journal of Power Sources</i> , 2007 , 173, 891-908	8.9	350
42	Design and testing of a passive planar three-cell DMFC. <i>Journal of Power Sources</i> , 2007 , 164, 287-292	8.9	41
41	A review of polymer electrolyte membranes for direct methanol fuel cells. <i>Journal of Power Sources</i> , 2007 , 169, 221-238	8.9	741
40	Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. <i>Journal of Power Sources</i> , 2007 , 173, 556-561	8.9	86
39	Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120200°C. <i>Journal of Power Sources</i> , 2007 , 172, 163-171	8.9	206
38	Transient Analysis of Hydrogen Sulfide Contamination on the Performance of a PEM Fuel Cell. Journal of the Electrochemical Society, 2007 , 154, B609	3.9	32
37	Single PEMFC Design and Validation for High-Temperature MEA Testing and Diagnosis up to 300°C. Electrochemical and Solid-State Letters, 2007 , 10, B142		18
36	AC impedance diagnosis of a 500W PEM fuel cell stack. <i>Journal of Power Sources</i> , 2006 , 161, 920-928	8.9	112

35	Investigation and improvement on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. <i>Journal of Power Sources</i> , 2006 , 162, 644-650	8.9	166
34	PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 LC to 120 LC. <i>Journal of Power Sources</i> , 2006 , 163, 532-537	8.9	166
33	Temperature Dependent Performance and In Situ AC Impedance of High-Temperature PEM Fuel Cells Using the Nafion-112 Membrane. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A2036	3.9	67
32	Discrepancies in the Measurement of Ionic Conductivity of PEMs Using Two- and Four-Probe AC Impedance Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2006 , 153, E173	3.9	53
31	Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. <i>Electrochimica Acta</i> , 2006 , 51, 1905-1916	6.7	122
30	Arsenic determination in gasoline by hydride generation atomic absorption spectroscopy combined with a factorial experimental design approach. <i>Fuel</i> , 2006 , 85, 2155-2161	7.1	19
29	Degradation of polymer electrolyte membranes. International Journal of Hydrogen Energy, 2006, 31, 183	3 8./1 85	
28	Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. <i>Journal of Power Sources</i> , 2006 , 156, 171-182	8.9	446
27	Liquid methanol concentration sensors for direct methanol fuel cells. <i>Journal of Power Sources</i> , 2006 , 159, 626-636	8.9	64
26	Architecture for portable direct liquid fuel cells. <i>Journal of Power Sources</i> , 2006 , 154, 202-213	8.9	181
25	A review of anode catalysis in the direct methanol fuel cell. <i>Journal of Power Sources</i> , 2006 , 155, 95-110	8.9	1492
24	Electrocatalytic reduction of O2 and H2O2 by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cell cathodes. <i>Journal of Power Sources</i> , 2006 , 161, 743-752	8.9	85
23	High temperature PEM fuel cells. <i>Journal of Power Sources</i> , 2006 , 160, 872-891	8.9	820
22	AC impedance diagnosis of a 500 W PEM fuel cell stack: Part II: Individual cell impedance. <i>Journal of Power Sources</i> , 2006 , 161, 929-937	8.9	84
21	Reversible one-electron electro-reduction of O2 to produce a stable superoxide catalyzed by adsorbed Co(II) hexadecafluoro-phthalocyanine in aqueous alkaline solution. <i>Journal of Electroanalytical Chemistry</i> , 2006 , 587, 293-298	4.1	35
20	Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. <i>Journal of Applied Electrochemistry</i> , 2006 , 36, 507-522	2.6	355
19	Temperature and pH Dependence of Oxygen Reduction Catalyzed by Iron Fluoroporphyrin Adsorbed on a Graphite Electrode. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A2421	3.9	40
18	Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II) 2 ,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode. <i>Journal of Power Sources</i> , 2005 , 142, 10-17	8.9	57

LIST OF PUBLICATIONS

17	Model for the contamination of fuel cell anode catalyst in the presence of fuel stream impurities. <i>Journal of Power Sources</i> , 2005 , 147, 58-71	8.9	59
16	Monomeric and Polymeric Tetra-aminophthalocyanatocobalt(II) Modified Electrodes: Electrocatalytic Reduction of Oxygen. <i>Journal of Porphyrins and Phthalocyanines</i> , 1997 , 01, 3-16	1.8	101
15	Rotating ring-disk electrode analysis of CO2 reduction electrocatalyzed by a cobalt tetramethylpyridoporphyrazine on the disk and detected as CO on a platinum ring. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 403, 93-100	4.1	53
14	Electrocatalytic activity of N,N?,N?,N?-tetramethyl-tetra-3,4-pyridoporphyrazinocobalt(II) adsorbed on a graphite electrode towards the oxidation of hydrazine and hydroxylamine. <i>Journal of Electroanalytical Chemistry</i> , 1996 , 406, 203-211	4.1	76
13	Poisoning effect of SCNIH2S and HCN on the reduction of O2 and H2O2 catalyzed by a 1:1 surface complex of Cu: 1,10-phenanthroline adsorbed on graphite electrodes, and its possible application in chemical analysis. <i>Journal of Electroanalytical Chemistry</i> , 1995 , 392, 43-53	4.1	20
12	Complexes of Cu(II) with electroactive chelating ligands adsorbed on graphite electrodes: Surface coordination chemistry and electrocatalysis. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 348, 81-97	4.1	56
11	Coordination of Fe3+ by Elizarin complexonelladsorbed on graphite electrodes to produce electrocatalysts for the reduction of O2 and H2O2. <i>Journal of Electroanalytical Chemistry</i> , 1993 , 353, 265-280	4.1	35
10	Electrocatalysts for the reduction of O2 and H2O2 based on complexes of Cu(II) with the strongly adsorbing 2,9-dimethyl-1,10-phenanthroline ligand. <i>Electrochimica Acta</i> , 1993 , 38, 2423-2429	6.7	44
9	Semiconductive properties and photoelectrochemistry of iron oxide electrodes I X. Photoresponses of sintered Zn-doped oxide electrode. <i>Electrochimica Acta</i> , 1992 , 37, 425-428	6.7	3
8	Electrochemistry of the Cu(II) complex of 4,7-diphenyl-1,10-phenanthrolinedisulfonate adsorbed on graphite electrodes and its behavior as an electrocatalyst for the reduction of O2 and H2O2. Journal of Electroanalytical Chemistry, 1992 , 341, 323-341	4.1	70
7	Semiconductive properties and photoelectrochemistry of iron oxide electrodes VIII. Photoresponses of sintered Zn-doped iron oxide electrode. <i>Electrochimica Acta</i> , 1991 , 36, 1585-1590	6.7	9
6	Direct Methanol Fuel Cells: History, Status and Perspectives1-78		28
5	Methanol-Tolerant Cathode Catalysts for DMFC257-314		1
4	Carbon Nanotube-Supported Catalysts for the Direct Methanol Fuel Cell315-354		1
3	State-of-the-Art Electrocatalysts for Direct Methanol Fuel Cells197-226		1
2	Toward Excellence of Electrocatalyst Design by Emerging Descriptor-Oriented Machine Learning. Advanced Functional Materials,2110748	15.6	3
1	MOF-based electrocatalysts for high-efficiency CO2 conversion: structure, performance, and perspectives. <i>Journal of Materials Chemistry A</i> ,	13	3