Hao Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7820890/publications.pdf

Version: 2024-02-01

20	1.461	471509	501196
28	1,461	17	28
papers	citations	h-index	g-index
28	28	28	2834
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Black Phosphorus Quantum Dot-Engineered Tin Oxide Electron Transport Layer for Highly Stable Perovskite Solar Cells with Negligible Hysteresis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11264-11272.	8.0	15
2	In situ growth of an opal-like TiO2 electron transport layer by atomic layer deposition for perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 880-885.	4.9	5
3	An ultrathin and compact electron transport layer made from novel water-dispersed Fe ₃ O ₄ nanoparticles to accomplish UV-stable perovskite solar cells. Materials Advances, 2021, 2, 3629-3636.	5.4	8
4	Coexistence of Photoelectric Conversion and Storage in van der Waals Heterojunctions. Physical Review Letters, 2021, 127, 217401.	7.8	13
5	Rewritable Optical Memory Based on Sign Switching of Magnetoresistance. Advanced Electronic Materials, 2020, 6, 1900701.	5.1	3
6	Fabricating an optimal rutile TiO2 electron transport layer by delicately tuning TiCl4 precursor solution for high performance perovskite solar cells. Nano Energy, 2020, 68, 104336.	16.0	33
7	Fabrication of a TiO ₂ /Fe ₂ O ₃ Core/Shell Nanostructure by Pulse Laser Deposition toward Stable and Visible Light Photoelectrochemical Water Splitting. ACS Omega, 2020, 5, 19861-19867.	3 . 5	11
8	Metal-free heterojunction of black phosphorus/oxygen-enriched porous g-C ₃ N ₄ as an efficient photocatalyst for Fenton-like cascade water purification. Journal of Materials Chemistry A, 2020, 8, 19484-19492.	10.3	51
9	Oxygen-vacancy-induced atomic and electronic reconstructions in magnetic Sr(Ti _{0.875} Fe _{0.125})O _{3-Î} thin films. Materials Research Express, 2020, 7, 076105.	1.6	1
10	Controllable conduction and hidden phase transitions revealed via vertical strain. Applied Physics Letters, 2019, 114, 252901.	3.3	5
11	Three-dimensional ZnO/ZnxCd1â^'xS/CdS nanostructures modified by microwave hydrothermal reaction-deposited CdSe quantum dots for chemical solar cells. Solar Energy, 2019, 191, 78-83.	6.1	7
12	Efficient planar perovskite solar cells based on low-cost spin-coated ultrathin Nb2O5 films. Solar Energy, 2018, 166, 187-194.	6.1	26
13	TiO ₂ Phase Junction Electron Transport Layer Boosts Efficiency of Planar Perovskite Solar Cells. Advanced Science, 2018, 5, 1700614.	11.2	67
14	High-performance UV–vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Research, 2017, 10, 2244-2256.	10.4	72
15	Three-Dimensional Lupinus-like TiO ₂ Nanorod@Sn ₃ O ₄ Nanosheet Hierarchical Heterostructured Arrays as Photoanode for Enhanced Photoelectrochemical Performance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38537-38544.	8.0	59
16	TiO ₂ Electron Transport Bilayer for Highly Efficient Planar Perovskite Solar Cell. Small, 2017, 13, 1701535.	10.0	85
17	Ultrathin Amorphous Ni(OH) ₂ Nanosheets on Ultrathin <i>α</i> â€Fe ₂ O ₃ Films for Improved Photoelectrochemical Water Oxidation. Advanced Materials Interfaces, 2016, 3, 1600256.	3.7	53
18	A Selfâ€Powered and Stable Allâ€Perovskite Photodetector–Solar Cell Nanosystem. Advanced Functional Materials, 2016, 26, 1296-1302.	14.9	203

#	Article	IF	CITATIONS
19	Enhancing photoelectrochemical activity with three-dimensional p-CuO/n-ZnO junction photocathodes. Science China Materials, 2016, 59, 825-832.	6.3	35
20	Efficient perovskite solar cells based on novel three-dimensional TiO2 network architectures. Science Bulletin, 2016, 61, 778-786.	9.0	28
21	Boosting Efficiency and Stability of Perovskite Solar Cells with CdS Inserted at TiO ₂ /Perovskite Interface. Advanced Materials Interfaces, 2016, 3, 1600729.	3.7	35
22	Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Research, 2015, 8, 382-405.	10.4	143
23	Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 2015, 3, 16445-16452.	10.3	91
24	Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells. Scientific Reports, 2015, 5, 12765.	3.3	22
25	2D Znln ₂ S ₄ Nanosheet/1D TiO ₂ Nanorod Heterostructure Arrays for Improved Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17200-17207.	8.0	302
26	Novel ZnO microflowers on nanorod arrays: local dissolution-driven growth and enhanced light harvesting in dye-sensitized solar cells. Nanoscale Research Letters, 2014, 9, 183.	5.7	12
27	Bandgapâ€Graded CdS _x Se _{1–x} Nanowires for Highâ€Performance Fieldâ€Effect Transistors and Solar Cells. Advanced Materials, 2013, 25, 1109-1113.	21.0	75
28	Nanowires: Bandgap-Graded CdSxSe1-xNanowires for High-Performance Field-Effect Transistors and Solar Cells (Adv. Mater. 8/2013). Advanced Materials, 2013, 25, 1082-1082.	21.0	1