Julian L Griffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7820796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proposed minimum reporting standards for chemical analysis. Metabolomics, 2007, 3, 211-221.	1.4	3,589
2	Metabolic profiles of cancer cells. Nature Reviews Cancer, 2004, 4, 551-561.	12.8	668
3	MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Research, 2013, 41, D781-D786.	6.5	578
4	Novel Theranostic Opportunities Offered by Characterization of Altered Membrane Lipid Metabolism in Breast Cancer Progression. Cancer Research, 2011, 71, 3236-3245.	0.4	444
5	Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort study. Lancet Diabetes and Endocrinology,the, 2014, 2, 810-818.	5.5	431
6	The Metabolomics Standards Initiative. Nature Biotechnology, 2007, 25, 846-848.	9.4	328
7	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Medicine, 2016, 13, e1002179.	3.9	324
8	<i>De novo</i> lipogenesis in the liver in health and disease: more than just a shunting yard for glucose. Biological Reviews, 2016, 91, 452-468.	4.7	323
9	Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Current Opinion in Chemical Biology, 2003, 7, 648-654.	2.8	256
10	Metabolomics as a tool for cardiac research. Nature Reviews Cardiology, 2011, 8, 630-643.	6.1	229
11	Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes and Endocrinology,the, 2014, 2, 65-75.	5.5	227
12	Assessing Cardiac Metabolism. Circulation Research, 2016, 118, 1659-1701.	2.0	211
13	NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics, 2013, 9, 1048-1072.	1.4	203
14	Interlaboratory Reproducibility of a Targeted Metabolomics Platform for Analysis of Human Serum and Plasma. Analytical Chemistry, 2017, 89, 656-665.	3.2	203
15	Realâ€time assessment of Krebs cycle metabolism using hyperpolarized C magnetic resonance spectroscopy. FASEB Journal, 2009, 23, 2529-2538.	0.2	197
16	Metabolic basis to Sherpa altitude adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6382-6387.	3.3	162
17	Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. PLoS Medicine, 2016, 13, e1002094.	3.9	150
18	The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 147-161.	1.8	145

#	Article	IF	CITATIONS
19	COordination of Standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics, 2015, 11, 1587-1597.	1.4	140
20	Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology, 2017, 65, 1165-1180.	3.6	138
21	Novel ketone diet enhances physical and cognitive performance. FASEB Journal, 2016, 30, 4021-4032.	0.2	132
22	Spectral profiles of cultured neuronal and glial cells derived from HRMAS1H NMR spectroscopy. NMR in Biomedicine, 2002, 15, 375-384.	1.6	128
23	Inorganic Nitrate Promotes the Browning of White Adipose Tissue Through the Nitrate-Nitrite-Nitric Oxide Pathway. Diabetes, 2015, 64, 471-484.	0.3	121
24	Metabolic profiles to define the genome: can we hear the phenotypes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 857-871.	1.8	117
25	Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics, 2006, 7, 1095-1107.	0.6	117
26	A cross-platform approach identifies genetic regulators of human metabolism and health. Nature Genetics, 2021, 53, 54-64.	9.4	117
27	A matter of fat: An introduction to lipidomic profiling methods. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 871, 174-181.	1.2	115
28	Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Research, 2003, 63, 3195-201.	0.4	111
29	Tumour Metabolomics in Animal Models of Human Cancer. Journal of Proteome Research, 2007, 6, 498-505.	1.8	109
30	An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver. Physiological Genomics, 2004, 17, 140-149.	1.0	101
31	The cholesterol biosynthesis pathway regulates IL-10 expression in human Th1 cells. Nature Communications, 2019, 10, 498.	5.8	98
32	A metabolomics perspective of human brain tumours. FEBS Journal, 2007, 274, 1132-1139.	2.2	93
33	Quorum Sensing Is Accompanied by Global Metabolic Changes in the Opportunistic Human Pathogen Pseudomonas aeruginosa. Journal of Bacteriology, 2015, 197, 2072-2082.	1.0	91
34	Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance. Scientific Reports, 2017, 7, 44845.	1.6	90
35	Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biology, 2019, 17, e3000297.	2.6	87
36	The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue. Genome Biology, 2011, 12, R75.	13.9	85

#	Article	IF	CITATIONS
37	Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nature Communications, 2019, 10, 1060.	5.8	85
38	Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biology, 2018, 19, 79.	3.8	83
39	Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nature Communications, 2021, 12, 1905.	5.8	82
40	The potential of Ion Mobility Mass Spectrometry for high-throughput and high-resolution lipidomics. Current Opinion in Chemical Biology, 2018, 42, 42-50.	2.8	81
41	A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology, 2014, 83, 1492-1499.	1.5	80
42	Metabolomics and its use in ecology. Austral Ecology, 2013, 38, 713-720.	0.7	79
43	Does Our Gut Microbiome Predict Cardiovascular Risk?. Circulation: Cardiovascular Genetics, 2015, 8, 187-191.	5.1	78
44	Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity. Diabetes, 2013, 62, 3697-3708.	0.3	76
45	The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism. Metabolomics, 2014, 10, 1018-1025.	1.4	76
46	Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology, 2021, 73, 1028-1044.	3.6	76
47	XBP-1 Remodels Lipid Metabolism to Extend Longevity. Cell Reports, 2019, 28, 581-589.e4.	2.9	75
48	A practical guide to metabolomic profiling as a discovery tool for human heart disease. Journal of Molecular and Cellular Cardiology, 2013, 55, 2-11.	0.9	74
49	Understanding mouse models of disease through metabolomics. Current Opinion in Chemical Biology, 2006, 10, 309-315.	2.8	72
50	Metabolomics of the interaction between PPARâ€Î± and age in the PPARâ€Î±â€null mouse. Molecular Systems Biology, 2009, 5, 259.	3.2	69
51	Computational tools and workflows in metabolomics: An international survey highlights the opportunity for harmonisation through Galaxy. Metabolomics, 2017, 13, 12.	1.4	69
52	Using metabolic profiling to assess plant-pathogen interactions: an example using rice (Oryza sativa) and the blast pathogen Magnaporthe grisea. European Journal of Plant Pathology, 2011, 129, 539-554.	0.8	68
53	Transcription Factor Nrf1 Negatively Regulates the Cystine/Glutamate Transporter and Lipid-Metabolizing Enzymes. Molecular and Cellular Biology, 2014, 34, 3800-3816.	1.1	68
54	Standard reporting requirements for biological samples in metabolomics experiments: mammalian/inÂvivo experiments. Metabolomics, 2007, 3, 179-188.	1.4	67

#	Article	IF	CITATIONS
55	Deletion of Stearoyl-CoA Desaturase-1 From the Intestinal Epithelium Promotes Inflammation and Tumorigenesis, Reversed by Dietary Oleate. Gastroenterology, 2018, 155, 1524-1538.e9.	0.6	66
56	Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Science Advances, 2016, 2, e1501235.	4.7	65
57	Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes. European Journal of Nutrition, 2019, 58, 1529-1543.	1.8	64
58	Dietary inorganic nitrate: From villain to hero in metabolic disease?. Molecular Nutrition and Food Research, 2016, 60, 67-78.	1.5	59
59	Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer. Cancer Research, 2016, 76, 4608-4618.	0.4	58
60	Liverâ€ 6 pecific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer. Hepatology, 2021, 74, 1203-1219.	3.6	57
61	Dissemination and analysis of the quality assurance (QA) and quality control (QC) practices of LC–MS based untargeted metabolomics practitioners. Metabolomics, 2020, 16, 113.	1.4	56
62	Fatty Acids Prevent Hypoxia-Inducible Factor-1α Signaling Through Decreased Succinate in Diabetes. JACC Basic To Translational Science, 2018, 3, 485-498.	1.9	55
63	An Unbiased Lipid Phenotyping Approach To Study the Genetic Determinants of Lipids and Their Association with Coronary Heart Disease Risk Factors. Journal of Proteome Research, 2019, 18, 2397-2410.	1.8	55
64	Impaired In Vivo Mitochondrial Krebs Cycle Activity After Myocardial Infarction Assessed Using Hyperpolarized Magnetic Resonance Spectroscopy. Circulation: Cardiovascular Imaging, 2014, 7, 895-904.	1.3	54
65	A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Scientific Reports, 2018, 8, 15651.	1.6	51
66	High-Resolution Magic Angle Spinning1H NMR Spectroscopy and Reverse Transcription-PCR Analysis of Apoptosis in a Rat Glioma. Analytical Chemistry, 2006, 78, 1546-1552.	3.2	50
67	Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance. Scientific Reports, 2015, 5, 18366.	1.6	50
68	Inhibition of sarcolemmal FAT/CD36 by sulfo-N-succinimidyl oleate rapidly corrects metabolism and restores function in the diabetic heart following hypoxia/reoxygenation. Cardiovascular Research, 2017, 113, 737-748.	1.8	50
69	nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data. Analytical Chemistry, 2018, 90, 649-656.	3.2	50
70	Alphavirus-induced hyperactivation of PI3K/AKT directs pro-viral metabolic changes. PLoS Pathogens, 2018, 14, e1006835.	2.1	50
71	Proposed reporting requirements for the description of NMR-based metabolomics experiments. Metabolomics, 2007, 3, 223-229.	1.4	49
72	Metabolic profiling of rodent biological fluids via 1H NMR spectroscopy using a 1 mm microlitre probe. Analyst, The, 2002, 127, 582-584.	1.7	48

#	Article	IF	CITATIONS
73	Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding?. Physiological Genomics, 2008, 34, 1-5.	1.0	48
74	The initial pathogenesis of cadmium induced renal toxicity. FEBS Letters, 2000, 478, 147-150.	1.3	47
75	Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart. Journal of Physiology, 2014, 592, 4715-4731.	1.3	47
76	Liquid Extraction Surface Analysis Mass Spectrometry Method for Identifying the Presence and Severity of Nonalcoholic Fatty Liver Disease. Analytical Chemistry, 2017, 89, 5161-5170.	3.2	47
77	Whole Blood Transcriptomics and Urinary Metabolomics to Define Adaptive Biochemical Pathways of High-Intensity Exercise in 50-60 Year Old Masters Athletes. PLoS ONE, 2014, 9, e92031.	1.1	47
78	Association between sucrose intake and risk of overweight and obesity in a prospective sub-cohort of the European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk). Public Health Nutrition, 2015, 18, 2815-2824.	1.1	46
79	Fatty Acid and Glucose Sensors in Hepatic Lipid Metabolism: Implications in NAFLD. Seminars in Liver Disease, 2015, 35, 250-261.	1.8	46
80	ω-3 oil intake during weight loss in obese women results in remodelling of plasma triglyceride and fatty acids. Metabolomics, 2009, 5, 363-374.	1.4	45
81	Metabolomics and Lipidomics Study of Mouse Models of Type 1 Diabetes Highlights Divergent Metabolism in Purine and Tryptophan Metabolism Prior to Disease Onset. Journal of Proteome Research, 2018, 17, 946-960.	1.8	44
82	A Combined Metabolomic and Proteomic Investigation of the Effects of a Failure to Express Dystrophin in the Mouse Heart. Journal of Proteome Research, 2008, 7, 2069-2077.	1.8	43
83	Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation. JCI Insight, 2017, 2, .	2.3	42
84	FAMIN Is a Multifunctional Purine Enzyme Enabling the Purine Nucleotide Cycle. Cell, 2020, 180, 278-295.e23.	13.5	42
85	A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism. Journal of General Virology, 2015, 96, 395-407.	1.3	41
86	The Influence of Pharmacogenetics on Fatty Liver Disease in the Wistar and Kyoto Rats:  A Combined Transcriptomic and Metabonomic Study. Journal of Proteome Research, 2007, 6, 54-61.	1.8	40
87	KniMet: a pipeline for the processing of chromatography–mass spectrometry metabolomics data. Metabolomics, 2018, 14, 52.	1.4	40
88	A Comprehensive UHPLC Ion Mobility Quadrupole Time-of-Flight Method for Profiling and Quantification of Eicosanoids, Other Oxylipins, and Fatty Acids. Analytical Chemistry, 2019, 91, 8025-8035.	3.2	40
89	Italian cohort of patients affected by inflammatory bowel disease is characterised by variation in glycerophospholipid, free fatty acids and amino acid levels. Metabolomics, 2018, 14, 140.	1.4	39
90	Applications of metabolomics and proteomics to the mdx mouse model of Duchenne muscular dystrophy: lessons from downstream of the transcriptome. Genome Medicine, 2009, 1, 32.	3.6	38

#	Article	IF	CITATIONS
91	A study of Caenorhabditis elegans DAF-2 mutants by metabolomics and differential correlation networks. Molecular BioSystems, 2013, 9, 1632.	2.9	38
92	The potential of metabonomics in drug safety and toxicology. Drug Discovery Today: Technologies, 2004, 1, 285-293.	4.0	37
93	Nitrate enhances skeletal muscle fatty acid oxidation via a nitric oxide-cGMP-PPAR-mediated mechanism. BMC Biology, 2015, 13, 110.	1.7	37
94	A targeted metabolomics assay for cardiac metabolism and demonstration using a mouse model of dilated cardiomyopathy. Metabolomics, 2016, 12, 59.	1.4	37
95	Comprehensive Metabolic Profiling of Age-Related Mitochondrial Dysfunction in the High-Fat-Fed <i>ob</i> / <i>ob</i> Mouse Heart. Journal of Proteome Research, 2015, 14, 2849-2862.	1.8	35
96	Inorganic Nitrate Mimics Exercise-Stimulated Muscular Fiber-Type Switching and Myokine and Î ³ -Aminobutyric Acid Release. Diabetes, 2017, 66, 674-688.	0.3	35
97	Metabolomics As a Tool for the Characterization of Drug-Resistant Epilepsy. Frontiers in Neurology, 2017, 8, 459.	1.1	35
98	The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. International Journal of Molecular Sciences, 2020, 21, 3480.	1.8	35
99	From genomic medicine to precision medicine: highlights of 2015. Genome Medicine, 2016, 8, 12.	3.6	32
100	Metabolomic and lipidomic plasma profile changes in human participants ascending to Everest Base Camp. Scientific Reports, 2019, 9, 2297.	1.6	31
101	Bone morphogenetic protein 8B promotes the progression of non-alcoholic steatohepatitis. Nature Metabolism, 2020, 2, 514-531.	5.1	31
102	Hematopoietic IKBKE limits the chronicity of inflammasome priming and metaflammation. Proceedings of the United States of America, 2015, 112, 506-511.	3.3	30
103	Metabolomics applied to diabetesâ ``lessons from human population studies. International Journal of Biochemistry and Cell Biology, 2017, 93, 136-147.	1.2	30
104	A randomized 3-way crossover study indicates that high-protein feeding induces de novo lipogenesis in healthy humans. JCI Insight, 2019, 4, .	2.3	30
105	The microbiota regulates murine inflammatory responses to toxin-induced CNS demyelination but has minimal impact on remyelination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25311-25321.	3.3	29
106	Mapping Rora expression in resting and activated CD4+ T cells. PLoS ONE, 2021, 16, e0251233.	1.1	29
107	Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine. FEBS Letters, 2004, 568, 49-54.	1.3	27
108	Dysbiosis associated with acute helminth infections in herbivorous youngstock – observations and implications. Scientific Reports, 2019, 9, 11121.	1.6	27

#	Article	IF	CITATIONS
109	Metabolic Profiling of the Diabetic Heart: Toward a Richer Picture. Frontiers in Physiology, 2019, 10, 639.	1.3	27
110	Ice-Age Climate Adaptations Trap the Alpine Marmot in a State of Low Genetic Diversity. Current Biology, 2019, 29, 1712-1720.e7.	1.8	27
111	An approach for the development and selection of chromatographic methods for high-throughput metabolomic screening of urine by ultra pressure LC-ESI-ToF-MS. Metabolomics, 2009, 5, 166-182.	1.4	26
112	Determining the <i>in vivo</i> regulation of cardiac pyruvate dehydrogenase based on label flux from hyperpolarised [1â€ ¹³ C]pyruvate. NMR in Biomedicine, 2011, 24, 980-987.	1.6	26
113	The use of stable isotopes in the study of human pathophysiology. International Journal of Biochemistry and Cell Biology, 2017, 93, 102-109.	1.2	25
114	Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature assessed with hyperpolarized MRI. Communications Biology, 2020, 3, 692.	2.0	25
115	Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci. BMC Medicine, 2021, 19, 232.	2.3	25
116	Biomarkers of food intake and metabolite differences between plasma and red blood cell matrices; a human metabolomic profile approach. Molecular BioSystems, 2013, 9, 1411.	2.9	23
117	Mechanistic insights revealed by lipid profiling in monogenic insulin resistance syndromes. Genome Medicine, 2015, 7, 63.	3.6	23
118	PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling. Free Radical Biology and Medicine, 2016, 95, 357-368.	1.3	22
119	1H NMR spectroscopy-based metabolomics analysis for the diagnosis of symptomatic E. coli-associated urinary tract infection (UTI). BMC Microbiology, 2017, 17, 201.	1.3	22
120	Metabolic phenotyping and cardiovascular disease: an overview of evidence from epidemiological settings. Heart, 2021, 107, 1123-1129.	1.2	22
121	Twenty years of metabonomics: so what has metabonomics done for toxicology?. Xenobiotica, 2020, 50, 110-114.	0.5	21
122	Downregulation of Keap1 Confers Features of a Fasted Metabolic State. IScience, 2020, 23, 101638.	1.9	21
123	Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nature Communications, 2022, 13, 1748.	5.8	21
124	Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Molecular Metabolism, 2021, 48, 101210.	3.0	20
125	So what have data standards ever done for us? The view from metabolomics. Genome Medicine, 2010, 2, 38.	3.6	19
126	massPix: an R package for annotation and interpretation of mass spectrometry imaging data for lipidomics. Metabolomics, 2017, 13, 128.	1.4	19

#	Article	IF	CITATIONS
127	Therapeutically expanded human regulatory T-cells are super-suppressive due to HIF1A induced expression of CD73. Communications Biology, 2021, 4, 1186.	2.0	19
128	Metabolomic Alterations in Thyrospheres and Adherent Parental Cells in Papillary Thyroid Carcinoma Cell Lines: A Pilot Study. International Journal of Molecular Sciences, 2018, 19, 2948.	1.8	17
129	Changes in plasma phospholipid fatty acid profiles over 13 years and correlates of change: European Prospective Investigation into Cancer and Nutrition-Norfolk Study. American Journal of Clinical Nutrition, 2019, 109, 1527-1534.	2.2	17
130	Comprehensive phenotypic analysis of the Dp1Tyb mouse strain reveals a broad range of Down syndrome-related phenotypes. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	17
131	A Metadata description of the data in "A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human.". BMC Research Notes, 2011, 4, 272.	0.6	16
132	A Metabolomics Investigation of Non-genotoxic Carcinogenicity in the Rat. Journal of Proteome Research, 2013, 12, 5775-5790.	1.8	16
133	Suppression of erythropoiesis by dietary nitrate. FASEB Journal, 2015, 29, 1102-1112.	0.2	16
134	Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness. Redox Biology, 2021, 41, 101907.	3.9	16
135	Methods for Performing Lipidomics in White Adipose Tissue. Methods in Enzymology, 2014, 538, 211-231.	0.4	15
136	Blood triacylglycerols: a lipidomic window on diet and disease. Biochemical Society Transactions, 2016, 44, 638-644.	1.6	15
137	Lipidomic Approaches to Study HDL Metabolism in Patients with Central Obesity Diagnosed with Metabolic Syndrome. International Journal of Molecular Sciences, 2022, 23, 6786.	1.8	15
138	Mitochondrial responses to extreme environments: insights from metabolomics. Extreme Physiology and Medicine, 2015, 4, 7.	2.5	14
139	Lipidomics Profiling of Human Adipose Tissue Identifies a Pattern of Lipids Associated with Fish Oil Supplementation. Journal of Proteome Research, 2017, 16, 3168-3179.	1.8	14
140	Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer. Journal of Lipid Research, 2020, 61, 1390-1399.	2.0	14
141	Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure. Molecular Metabolism, 2020, 40, 101020.	3.0	14
142	Cysteine and iron accelerate the formation of ribose-5-phosphate, providing insights into the evolutionary origins of the metabolic network structure. PLoS Biology, 2021, 19, e3001468.	2.6	14
143	Metabolomic applications to neuroscience: more challenges than chances?. Expert Review of Proteomics, 2007, 4, 435-437.	1.3	13
144	Cyclooxygenase-2, Asymmetric Dimethylarginine, and the Cardiovascular Hazard From Nonsteroidal Anti-Inflammatory Drugs. Circulation, 2018, 138, 2367-2378.	1.6	13

#	Article	IF	CITATIONS
145	A dietary pattern derived using B-vitamins and its relationship with vascular markers over the life course. Clinical Nutrition, 2019, 38, 1464-1473.	2.3	13
146	Consequences of Lipid Remodeling of Adipocyte Membranes Being Functionally Distinct from Lipid Storage in Obesity. Journal of Proteome Research, 2020, 19, 3919-3935.	1.8	12
147	β-hydroxybutyrate accumulates in the rat heart during low-flow ischaemia with implications for functional recovery. ELife, 2021, 10, .	2.8	12
148	Metabolic Effects of Doxorubicin on the Rat Liver Assessed With Hyperpolarized MRI and Metabolomics. Frontiers in Physiology, 2021, 12, 782745.	1.3	12
149	Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease. Journal of Lipid Research, 2017, 58, 1306-1314.	2.0	11
150	Ten years of Genome Medicine. Genome Medicine, 2019, 11, 7.	3.6	11
151	Unnecessary obstacles to COVID-19 mass testing. Lancet, The, 2020, 396, 1633.	6.3	11
152	Insulin resistance induced by growth hormone is linked to lipolysis and associated with suppressed pyruvate dehydrogenase activity in skeletal muscle: a 2 × 2 factorial, randomised, crossover study in human individuals. Diabetologia, 2020, 63, 2641-2653.	2.9	10
153	Histone acetyltransferase NAA40 modulates acetyl-CoA levels and lipid synthesis. BMC Biology, 2022, 20, 22.	1.7	10
154	Strategies for data analyses in a high resolution 1H NMR based metabolomics study of a mouse model of Batten disease. Metabolomics, 2007, 3, 121-136.	1.4	9
155	Mtrr hypomorphic mutation alters liver morphology, metabolism and fuel storage in mice. Molecular Genetics and Metabolism Reports, 2020, 23, 100580.	0.4	9
156	Decreased Fatty Acid Transporter FABP1 and Increased Isoprostanes and Neuroprostanes in the Human Term Placenta: Implications for Inflammation and Birth Weight in Maternal Pre-Gestational Obesity. Nutrients, 2021, 13, 2768.	1.7	9
157	Inorganic Nitrate Promotes Glucose Uptake and Oxidative Catabolism in White Adipose Tissue Through the XOR-Catalyzed Nitric Oxide Pathway. Diabetes, 2020, 69, 893-901.	0.3	8
158	Hyphenating sizeâ€exclusion chromatography with electrospray mass spectrometry; using onâ€line liquidâ€liquid extraction to study the lipid composition of lipoprotein particles. Rapid Communications in Mass Spectrometry, 2015, 29, 1969-1976.	0.7	7
159	IsotopicLabelling: an R package for the analysis of MS isotopic patterns of labelled analytes. Bioinformatics, 2017, 33, 300-302.	1.8	7
160	Crosstalk between Metabolic Alterations and Altered Redox Balance in PTC-Derived Cell Lines. Metabolites, 2019, 9, 23.	1.3	7
161	A model for determining cardiac mitochondrial substrate utilisation using stable 13C-labelled metabolites. Metabolomics, 2019, 15, 154.	1.4	7
162	Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor-Î ³ Coactivator 1-β Knock Out Mice on a High Fat Diet. Metabolites, 2012, 2, 366-381.	1.3	6

#	Article	IF	CITATIONS
163	L-Carnitine Stimulates In Vivo Carbohydrate Metabolism in the Type 1 Diabetic Heart as Demonstrated by Hyperpolarized MRI. Metabolites, 2021, 11, 191.	1.3	6
164	β-Hydroxybutyrate Oxidation in Exercise Is Impaired by Low-Carbohydrate and High-Fat Availability. Frontiers in Medicine, 2021, 8, 721673.	1.2	6
165	Transcriptional, epigenetic and metabolic signatures in cardiometabolic syndrome defined by extreme phenotypes. Clinical Epigenetics, 2022, 14, 39.	1.8	6
166	Decrease in Myelin-Associated Lipids Precedes Neuronal Loss and Glial Activation in the CNS of the Sandhoff Mouse as Determined by Metabolomics. Metabolites, 2021, 11, 18.	1.3	5
167	Enhanced hepatic respiratory capacity and altered lipid metabolism support metabolic homeostasis during short-term hypoxic stress. BMC Biology, 2021, 19, 265.	1.7	4
168	Identification of transcriptional biomarkers induced by SERMS in human endometrial cells using multivariate analysis of DNA microarrays. Biomarkers, 2004, 9, 447-460.	0.9	3
169	A clustering-based preprocessing method for the elimination of unwanted residuals in metabolomic data. Metabolomics, 2017, 13, 1.	1.4	3
170	CHAPTER 2. Multivariate Statistics in Lipidomics. New Developments in Mass Spectrometry, 2020, , 25-48.	0.2	3
171	Gene and metabolite expression dependence on body mass index in human myocardium. Scientific Reports, 2022, 12, 1425.	1.6	3
172	The Metabolomics Society—Current State of the Membership and Future Directions. Metabolites, 2019, 9, 89.	1.3	2
173	Monitoring apoptosis in intact cells by highâ€resolution magic angle spinning 1 H NMR spectroscopy. NMR in Biomedicine, 2021, 34, e4456.	1.6	2
174	NMR-Based Metabolomics in Cardiac Research. Methods in Molecular Biology, 2019, 2037, 189-194.	0.4	2
175	Ask not what data standards can do for you but what you can do for data standards: a personal view of reporting standardisation in metabolomic experiments. Metabolomics, 2011, 7, 305-306.	1.4	1
176	Metabolomics dataset of PPAR-pan treated rat liver. Data in Brief, 2016, 8, 196-202.	0.5	1
177	The use of animal models in metabolomics. , 2020, , 123-136.		1
178	In memory of Michael J. O. Wakelam (1955–2020): a pioneer in lipid signalling and lipidomics. Metabolomics, 2020, 16, 1.	1.4	1
179	Nrf2 activation does not affect adenoma development in a mouse model of colorectal cancer. Communications Biology, 2021, 4, 1081.	2.0	1
180	Dietary inorganic nitrate: From villain to hero in metabolic disease?. , 2016, 60, 67.		1

Dietary inorganic nitrate: From villain to hero in metabolic disease?. , 2016, 60, 67. 180

#	Article	IF	CITATIONS
181	Reply to Comment on "Deletion of btn1, an orthologue of CLN3, increases glycolysis and perturbs amino acid metabolism in the fission yeast model of Batten disease― Molecular BioSystems, 2011, 7, 1349.	2.9	0
182	A single enteral feed prior to the commencement of parenteral nutrition ameliorates the incidence of steatosis in parenterally fed neonatal piglets. Metabolomics, 2011, 7, 118-125.	1.4	0
183	Response to Comment on Lee et al. Diabetes 2015;64:2836–2846. Comment on Roberts et al. Diabetes 2015;64:471–484. Diabetes, 2016, 65, e16-e16.	0.3	0
184	Reply. Hepatology, 2022, 75, 1347-1348.	3.6	0
185	1H Nuclear Magnetic Resonance: A Future Approach to the Metabolic Profiling of Psychedelics in Human Biofluids?. Frontiers in Psychiatry, 2021, 12, 742856.	1.3	0