Katarzyna Staszak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7820198/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Membrane applications in the food industry. ChemistrySelect, 2023, 8, 2647-2677.	0.7	2
2	Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1568.	6.2	38
3	Membrane techniques in the production of beverages. ChemistrySelect, 2022, .	0.7	О
4	Removal of Copper(II) in the Presence of Sodium Dodecylobenzene Sulfonate from Acidic Effluents Using Adsorption on Ion Exchangers and Micellar-Enhanced Ultrafiltration Methods. Molecules, 2022, 27, 2430.	1.7	7
5	Surface activity measurements and quantum molecular modeling – The way to extraction behavior knowledge?. Journal of Molecular Liquids, 2021, 322, 114513.	2.3	3
6	Diffusion dialysis and extraction integrated system for recovery of cobalt(II) from industrial effluent. Journal of Water Process Engineering, 2021, 39, 101754.	2.6	11
7	Effective Pd(II) carriers for classical extraction and pseudo-emulsion system. Separation and Purification Technology, 2021, 265, 118509.	3.9	8
8	Surface functionalization – The way for advanced applications of smart materials. Coordination Chemistry Reviews, 2021, 436, 213846.	9.5	110
9	Reduction-adsorption of chromium(VI) by using IL-imprinted resin -innovative solution for water purification. Journal of Molecular Liquids, 2021, 343, 116977.	2.3	5
10	Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioactive Materials, 2021, 6, 2412-2438.	8.6	52
11	Achievement in active agent structures as a power tools in tumor angiogenesis imaging. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188560.	3.3	1
12	Application of diffusion dialysis for reduction of acidity of real pregnant leach solutions containing Ni and Co ions. Separation Science and Technology, 2020, 55, 2227-2237.	1.3	3
13	Hydrometallurgical Recovery of Cobalt(II) from Spent Industrial Catalysts. Catalysts, 2020, 10, 61.	1.6	19
14	Study of surface properties of aqueous solutions of sodium dodecyl sulfate in the presence of hydrochloric acid and heavy metal ions. Journal of Molecular Liquids, 2020, 299, 112170.	2.3	52
15	Modeling of Urea Decomposition in Selective Catalytic Reduction (SCR) for Systems of Diesel Exhaust Gases Aftertreatment by Finite Volume Method. Catalysts, 2020, 10, 749.	1.6	2
16	Comprehensive study of stability of copper oxide nanoparticles in complex biological media. Journal of Molecular Liquids, 2020, 319, 114086.	2.3	8
17	8. Microcapsules in extraction technology. , 2020, , 207-232.		1
18	Halogened hydrocarbons – current trends. ChemistrySelect, 2020, 5, .	0.7	0

KATARZYNA STASZAK

4

#	Article	IF	CITATIONS
19	Analysis and Modeling of the Process of Metal Separation from the Aqueous Phase in a Pseudo-emulsion Based Hollow Fiber Strip Dispersion. , 2020, , 441-451.		0
20	Lanthanides complexes – Chiral sensing of biomolecules. Coordination Chemistry Reviews, 2019, 397, 76-90.	9.5	117
21	Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants. Molecules, 2019, 24, 4010.	1.7	5
22	Lanthanides and tissue engineering strategies for bone regeneration. Coordination Chemistry Reviews, 2019, 388, 248-267.	9.5	28
23	Static sorption of heavy metal ions on ion exchanger in the presence of sodium dodecylbenzenesulfonate. Adsorption, 2019, 25, 393-404.	1.4	12
24	Quality of hair shampoos differing in the type of basic surfactant. Problemy JakoÅšci, 2019, 1, 23-26.	0.1	0
25	Energy industry. ChemistrySelect, 2018, 3, .	0.7	1
26	4. Energy industry. , 2018, , 105-140.		0
27	6. Chemical and petrochemical industry. , 2018, , 181-220.		0
28	Chemical and petrochemical industry. ChemistrySelect, 2018, 3, .	0.7	1
29	Metals in Wastes. , 2018, , .		5
30	Effect of N-dodecyl-N-(propylpiperydinium-3-sulfonate) on Usage Properties of Liquid Soaps for Sensitive Skin. Tenside, Surfactants, Detergents, 2018, 55, 439-446.	0.5	4
31	Badanie transportu jonów metali w wybranych ukÅ,adach separacyjnych. Przemysl Chemiczny, 2018, 1, 71-75.	0.0	0
32	Synthesis, Surface and Antimicrobial Activity of Piperidine-Based Sulfobetaines. Journal of Surfactants and Detergents, 2017, 20, 151-158.	1.0	21
33	Recovery of zinc(II) from chloride solutions using pseudo-emulsion based hollow fiber strip dispersion with pyridineketoxime extractants. Separation and Purification Technology, 2017, 177, 152-160.	3.9	13
34	Facile Synthesis of Sulfobetaine-Stabilized Cu ₂ O Nanoparticles and Their Biomedical Potential. ACS Biomaterials Science and Engineering, 2017, 3, 3183-3194.	2.6	19
35	Artificial metalloenzymes as catalysts in non-natural compounds synthesis. Coordination Chemistry Reviews, 2017, 351, 160-171.	9.5	20

8. Polymers in separation processes. , 2017, , 235-276.

#	Article	IF	CITATIONS
37	Polymers in separation processes. ChemistrySelect, 2017, 2, .	0.7	5
38	Membrane processes. Physical Sciences Reviews, 2017, 2, .	0.8	0
39	Removal of cobalt(II) and zinc(II) from sulphate solutions by means of extraction with sodium bis(2,4,4-trimethylpentyl)phosphinate (Na-Cyanex 272). Clean Technologies and Environmental Policy, 2016, 18, 1961-1970.	2.1	15
40	Surface and Antimicrobial Activity of Sulfobetaines. Journal of Surfactants and Detergents, 2016, 19, 813-822.	1.0	23
41	Removal of fumaric acid from simulated and real fermentation broth. Journal of Chemical Technology and Biotechnology, 2015, 90, 432-440.	1.6	5
42	Effect of Sodium Chloride on the Surface and Wetting Properties of Aqueous Solutions of Cocamidopropyl Betaine. Journal of Surfactants and Detergents, 2015, 18, 321-328.	1.0	65
43	Synthesis and Interfacial Activity of Novel Heterogemini Sulfobetaines in Aqueous Solution. Journal of Surfactants and Detergents, 2015, 18, 477-486.	1.0	20
44	Recovery of zinc(II) from chloride solutions using pseudo-emulsion based hollow fiber strip dispersion (PEHFSD) with 1-(3-pyridyl)undecan-1-one oxime or tributylphosphate. Separation and Purification Technology, 2015, 154, 204-210.	3.9	20
45	Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth. Bioresource Technology, 2014, 167, 219-225.	4.8	29
46	Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions. Chemical Papers, 2013, 67, .	1.0	11
47	Application of nanofiltration in the process of the separation of model fermentation broths components. Polish Journal of Chemical Technology, 2013, 15, 1-4.	0.3	29
48	Synthesis and Interfacial Activity of Novel Sulfobetaines in Aqueous Solutions. Tenside, Surfactants, Detergents, 2013, 50, 45-51.	0.5	10
49	Micellar Enhanced Ultrafiltration as a Method of Removal of Chromium(III) Ions from Aqueous Solutions. Separation Science and Technology, 2012, 47, 802-810.	1.3	13
50	Copper(II) sulphate solutions treatment by solvent extraction with Na-Cyanex 272. Separation and Purification Technology, 2012, 85, 183-192.	3.9	28
51	Removal of Cadmium(II) Ions from Chloride Solutions by Cyanex 301 and Cyanex 302. Separation Science and Technology, 2011, 46, 1495-1502.	1.3	20
52	Equilibrium and rate of iron(III) extraction from chloride solutions by individual hydrophobic extractants and their mixtures. Polish Journal of Chemical Technology, 2011, 13, 1-5.	0.3	4
53	Removal of metal ions from aqueous solutions by micellar enhanced ultra-filtration (MEUF). Polish Journal of Chemical Technology, 2010, 12, 62-65.	0.3	6
54	Investigation of the interaction in binary mixed extraction systems by Fourier Transform Infrared Spectroscopy (FT-IR). Hydrometallurgy, 2008, 90, 75-84.	1.8	22

KATARZYNA STASZAK

#	Article	IF	CITATIONS
55	Adsorption at the liquid/liquid interface in mixed systems with hydrophobic extractants and modifiers. Journal of Colloid and Interface Science, 2006, 294, 411-417.	5.0	15
56	Adsorption at the liquid/liquid interface in mixed systems with hydrophobic extractants and modifiers 1. Study of equilibrium interfacial tension at the hydrocarbon/water interface in binary mixed systems. Journal of Colloid and Interface Science, 2005, 285, 1-8.	5.0	29
57	Estimation of Diffusion Coefficients Based on Adsorption Measurements in Model Extraction Systems. Chemical Engineering and Technology, 2005, 28, 985-990.	0.9	6
58	Interfacial activity of copper(II) complexes with chelating ligands and individual hydrophobic extractants in model extraction systems. Journal of Colloid and Interface Science, 2004, 280, 184-191.	5.0	16
59	Estimation of Trioctylphosphine Oxide (TOPO) Diffusion Coefficients by Dynamic Adsorption Measurements in Model Extraction Systems. Journal of Colloid and Interface Science, 2002, 248, 143-148.	5.0	16
60	Interfacial Activity of Trioctyloamine in Hydrocarbon/Water Systems with Nonorganic Electrolytes. Journal of Colloid and Interface Science, 2001, 233, 211-218.	5.0	26
61	Computational Fluid Dynamics (CFD) Modelling of Porous, Ultrafiltration Membranes. Journal of Membrane and Separation Technology, 0, , .	0.4	0