Clemens Kratochwil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7819887/publications.pdf

Version: 2024-02-01

23500 20900 14,179 120 58 115 citations h-index g-index papers 131 131 131 6458 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	⁶⁸ Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. Journal of Nuclear Medicine, 2019, 60, 801-805.	2.8	874
2	The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 197-209.	3.3	866
3	²²⁵ Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. Journal of Nuclear Medicine, 2016, 57, 1941-1944.	2.8	741
4	German Multicenter Study Investigating < sup > 177 < /sup > Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. Journal of Nuclear Medicine, 2017, 58, 85-90.	2.8	646
5	Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. Journal of Nuclear Medicine, 2018, 59, 1415-1422.	2.8	522
6	PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with ¹⁷⁷ Lu-Labeled PSMA-617. Journal of Nuclear Medicine, 2016, 57, 1170-1176.	2.8	475
7	⁶⁸ Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. Journal of Nuclear Medicine, 2019, 60, 386-392.	2.8	468
8	A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. Journal of Nuclear Medicine, 2018, 59, 1423-1429.	2.8	453
9	Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. Journal of Nuclear Medicine, 2015, 56, 914-920.	2.8	451
10	Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 1258-1268.	3.3	425
11	Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with ²²⁵ Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. Journal of Nuclear Medicine, 2017, 58, 1624-1631.	2.8	367
12	The Theranostic PSMA Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry, and First Evaluation of Tumor Lesions. Journal of Nuclear Medicine, 2015, 56, 1697-1705.	2.8	332
13	Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with ²²⁵ Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. Journal of Nuclear Medicine, 2018, 59, 795-802.	2.8	322
14	Development of Fibroblast Activation Protein–Targeted Radiotracers with Improved Tumor Retention. Journal of Nuclear Medicine, 2019, 60, 1421-1429.	2.8	281
15	EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2536-2544.	3.3	265
16	An Overview of Targeted Alpha Therapy with ²²⁵ Actinium and ²¹³ Bismuth. Current Radiopharmaceuticals, 2018, 11, 200-208.	0.3	248
17	Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 42-51.	3.3	244
18	Detection Efficacy of ¹⁸ F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. Journal of Nuclear Medicine, 2019, 60, 362-368.	2.8	238

#	Article	IF	CITATIONS
19	The Rise of PSMA Ligands for Diagnosis and Therapy of Prostate Cancer. Journal of Nuclear Medicine, 2016, 57, 79S-89S.	2.8	200
20	68Ga-PSMA-11 PET/CT: a new technique with high potential for the radiotherapeutic management of prostate cancer patients. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 34-41.	3.3	194
21	Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma: ⁶⁴ Cu- and ²²⁵ Ac-Labeled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models. Journal of Nuclear Medicine, 2020, 61, 563-569.	2.8	176
22	FAPI-74 PET/CT Using Either ¹⁸ F-AlF or Cold-Kit ⁶⁸ Ga Labeling: Biodistribution, Radiation Dosimetry, and Tumor Delineation in Lung Cancer Patients. Journal of Nuclear Medicine, 2021, 62, 201-207.	2.8	163
23	¹⁷⁷ Lu-PSMA Radioligand Therapy for Prostate Cancer. Journal of Nuclear Medicine, 2017, 58, 1196-1200.	2.8	159
24	[177Lu]Lutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2015, 42, 987-988.	3.3	155
25	Radiation dosimetry of 68Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1611-1620.	3.3	143
26	Targeted Alpha Therapy, an Emerging Class of Cancer Agents. JAMA Oncology, 2018, 4, 1765.	3.4	143
27	Intraindividual Comparison of ¹⁸ F-PSMA-1007 and ¹⁸ F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. Journal of Nuclear Medicine, 2018, 59, 1076-1080.	2.8	140
28	Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharmacy and Chemistry, 2019, 4, 16.	1.8	134
29	Predictors of Overall and Disease-Free Survival in Metastatic Castration-Resistant Prostate Cancer Patients Receiving ²²⁵ Ac-PSMA-617 Radioligand Therapy. Journal of Nuclear Medicine, 2020, 61, 62-69.	2.8	128
30	Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. European Urology, 2021, 79, 343-350.	0.9	128
31	Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology, 2014, 16, 434-440.	0.6	120
32	Nomograms to predict outcomes after 177Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: an international, multicentre, retrospective study. Lancet Oncology, The, 2021, 22, 1115-1125.	5.1	120
33	Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 2045-2054.	3.3	116
34	Head-to-head intra-individual comparison of biodistribution and tumor uptake of 68Ga-FAPI and 18F-FDG PET/CT in cancer patients. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4377-4385.	3.3	114
35	Impact of ⁶⁸ Ga-FAPI PET/CT Imaging on the Therapeutic Management of Primary and Recurrent Pancreatic Ductal Adenocarcinomas. Journal of Nuclear Medicine, 2021, 62, 779-786.	2.8	113
36	Design and Development of ^{99m} Tc-Labeled FAPI Tracers for SPECT Imaging and ¹⁸⁸ Re Therapy. Journal of Nuclear Medicine, 2020, 61, 1507-1513.	2.8	110

#	Article	IF	CITATIONS
37	Targeted alpha therapy of mCRPC: Dosimetry estimate of 213Bismuth-PSMA-617. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 31-37.	3.3	107
38	The Role of sup 68 / sup Ga-FAPI PET/CT for Patients with Malignancies of the Lower Gastrointestinal Tract: First Clinical Experience. Journal of Nuclear Medicine, 2020, 61, 1331-1336.	2.8	106
39	⁶⁸ Ga or ¹⁸ F for Prostate Cancer Imaging?. Journal of Nuclear Medicine, 2017, 58, 687-688.	2.8	105
40	PMPA for Nephroprotection in PSMA-Targeted Radionuclide Therapy of Prostate Cancer. Journal of Nuclear Medicine, 2015, 56, 293-298.	2.8	100
41	Intraindividual Comparison of ¹⁸ F-PSMA-1007 PET/CT, Multiparametric MRI, and Radical Prostatectomy Specimens in Patients with Primary Prostate Cancer: A Retrospective, Proof-of-Concept Study. Journal of Nuclear Medicine, 2017, 58, 1805-1810.	2.8	91
42	68Ga-FAPI-PET/CT in patients with various gynecological malignancies. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4089-4100.	3.3	91
43	18F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 1929-1930.	3.3	81
44	⁶⁸ Ga-PSMA-11 PET/CT in Newly Diagnosed Carcinoma of the Prostate: Correlation of Intraprostatic PSMA Uptake with Several Clinical Parameters. Journal of Nuclear Medicine, 2017, 58, 1943-1948.	2.8	81
45	Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 871-880.	3.3	80
46	Hepatic arterial infusion enhances DOTATOC radiopeptide therapy in patients with neuroendocrine liver metastases. Endocrine-Related Cancer, 2011, 18, 595-602.	1.6	79
47	225Ac-PSMA-617 for Therapy of Prostate Cancer. Seminars in Nuclear Medicine, 2020, 50, 133-140.	2.5	78
48	Development and dosimetry of 203Pb/212Pb-labelled PSMA ligands: bringing "the lead―into PSMA-targeted alpha therapy?. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1081-1091.	3.3	77
49	Diagnostic Accuracy of ¹⁸ F-PSMA-1007 PET/CT Imaging for Lymph Node Staging of Prostate Carcinoma in Primary and Biochemical Recurrence. Journal of Nuclear Medicine, 2021, 62, 208-213.	2.8	77
50	Intraindividual Comparison of Selective Arterial versus Venous 68Ga-DOTATOC PET/CT in Patients with Gastroenteropancreatic Neuroendocrine Tumors. Clinical Cancer Research, 2010, 16, 2899-2905.	3.2	76
51	Current Status of Prostate-Specific Membrane Antigen Targeting in Nuclear Medicine: Clinical Translation of Chelator Containing Prostate-Specific Membrane Antigen Ligands Into Diagnostics and Therapy for Prostate Cancer. Seminars in Nuclear Medicine, 2016, 46, 405-418.	2.5	72
52	Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing 225Ac-PSMA-617 RLT. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 139-147.	3.3	72
53	Prior therapies as prognostic factors of overall survival in metastatic castration-resistant prostate cancer patients treated with [177Lu]Lu-PSMA-617. A WARMTH multicenter study (the 617 trial). European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 113-122.	3.3	72
54	Fibroblast Activation Protein–Specific PET/CT Imaging in Fibrotic Interstitial Lung Diseases and Lung Cancer: A Translational Exploratory Study. Journal of Nuclear Medicine, 2022, 63, 127-133.	2.8	72

#	Article	IF	CITATIONS
55	Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with 131I-MIP-1095. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 950-959.	3.3	69
56	Repeated ¹⁷⁷ Lu-Labeled PSMA-617 Radioligand Therapy Using Treatment Activities of Up to 9.3 GBq. Journal of Nuclear Medicine, 2018, 59, 459-465.	2.8	68
57	FAP and FAPI-PET/CT in Malignant and Non-Malignant Diseases: A Perfect Symbiosis?. Cancers, 2021, 13, 4946.	1.7	67
58	Comparison of 68Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: Initial results. Neuro-Oncology, 2015, 17, 312-319.	0.6	64
59	Patients Resistant Against PSMA-Targeting α-Radiation Therapy Often Harbor Mutations in DNA Damage-Repair–Associated Genes. Journal of Nuclear Medicine, 2020, 61, 683-688.	2.8	61
60	Design of Internalizing PSMA-specific Glu-ureido-based Radiotherapeuticals. Theranostics, 2016, 6, 1085-1095.	4.6	60
61	[153Sm]Samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 3011-3013.	3.3	60
62	FAPI-PET/CT improves staging in a lung cancer patient with cerebral metastasis. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1754-1755.	3.3	58
63	Biochemical Recurrence of Prostate Cancer: Initial Results with [¹⁸ F]PSMA-1007 PET/CT. Journal of Nuclear Medicine, 2018, 59, 632-635.	2.8	55
64	Radionuclide Therapy of Metastatic Prostate Cancer. Seminars in Nuclear Medicine, 2019, 49, 313-325.	2.5	54
65	The Future of Radioligand Therapy: $\hat{l}\pm,\hat{l}^2$, or Both?. Journal of Nuclear Medicine, 2017, 58, 1017-1018.	2.8	53
66	⁶⁸ Ga-PSMA-11 PET/CT in Primary and Recurrent Prostate Carcinoma: Implications for Radiotherapeutic Management in 121 Patients. Journal of Nuclear Medicine, 2019, 60, 234-240.	2.8	49
67	18F-PSMA-1007 PET/CT Detects Micrometastases in a Patient With Biochemically Recurrent Prostate Cancer. Clinical Genitourinary Cancer, 2017, 15, e497-e499.	0.9	47
68	Correlation Between SUV _{max} and CT Radiomic Analysis Using Lymph Node Density in PET/CT-Based Lymph Node Staging. Journal of Nuclear Medicine, 2017, 58, 282-287.	2.8	44
69	Positive FAPI-PET/CT in a metastatic castration-resistant prostate cancer patient with PSMA-negative/FDG-positive disease. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2040-2041.	3.3	42
70	Tumor Sink Effect in ⁶⁸ Ga-PSMA-11 PET: Myth or Reality?. Journal of Nuclear Medicine, 2022, 63, 226-232.	2.8	42
71	68Ga-FAPI-PET/CT improves diagnostic staging and radiotherapy planning of adenoid cystic carcinomas $\hat{a} \in \mathbb{C}$ Imaging analysis and histological validation. Radiotherapy and Oncology, 2021, 160, 192-201.	0.3	40
72	Response Prediction of ¹⁷⁷ Lu-PSMA-617 Radioligand Therapy Using Prostate-Specific Antigen, Chromogranin A, and Lactate Dehydrogenase. Journal of Nuclear Medicine, 2020, 61, 689-695.	2.8	39

#	Article	IF	CITATIONS
73	18F-labeled tracers targeting fibroblast activation protein. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 26.	1.8	38
74	Dosing 225Ac-DOTATOC in patients with somatostatin-receptor-positive solid tumors: 5-year follow-up of hematological and renal toxicity. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 49, 54-63.	3.3	35
75	Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 729.e7-729.e16.	0.8	34
76	Multimodal Imaging for Early Functional Response Assessment of 90Y-/177Lu-DOTATOC Peptide Receptor Targeted Radiotherapy with DW-MRI and 68Ga-DOTATOC-PET/CT. Molecular Imaging and Biology, 2014, 16, 586-594.	1.3	32
77	Simultaneous whole-body 18F–PSMA-1007-PET/MRI with integrated high-resolution multiparametric imaging of the prostatic fossa for comprehensive oncological staging of patients with prostate cancer: a pilot study. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 340-347.	3.3	32
78	Intraindividual Comparison of ^{99m} Tc-Methylene Diphosphonate and Prostate-Specific Membrane Antigen Ligand ^{99m} Tc-MIP-1427 in Patients with Osseous Metastasized Prostate Cancer. Journal of Nuclear Medicine, 2018, 59, 1373-1379.	2.8	31
79	Radiomic Analysis using Density Threshold for FDG-PET/CT-Based N-Staging in Lung Cancer Patients. Molecular Imaging and Biology, 2017, 19, 315-322.	1.3	30
80	< sup $>$ 68 $<$ /sup $>$ Ga-DOTA-GGNle-CycMSH $<$ sub $>$ hex $<$ /sub $>$ targets the melanocortin-1 receptor for melanoma imaging. Science Translational Medicine, 2018, 10, .	5.8	30
81	Two Tumors, One Target. Clinical Nuclear Medicine, 2021, 46, 842-844.	0.7	30
82	Radioligands Targeting Fibroblast Activation Protein (FAP). Cancers, 2021, 13, 5744.	1.7	30
83	PET/MRI and PET/CT in Lung Lesions and Thoracic Malignancies. Seminars in Nuclear Medicine, 2015, 45, 268-281.	2.5	29
84	FAP-specific PET signaling shows a moderately positive correlation with relative CBV and no correlation with ADC in 13 IDH wildtype glioblastomas. European Journal of Radiology, 2020, 127, 109021.	1.2	28
85	⁶⁸ Ga-PSMA PET/CT and Volumetric Morphology of PET-Positive Lymph Nodes Stratified by Tumor Differentiation of Prostate Cancer. Journal of Nuclear Medicine, 2017, 58, 1949-1955.	2.8	27
86	Dosimetry Estimate and Initial Clinical Experience with ⁹⁰ Y-PSMA-617. Journal of Nuclear Medicine, 2019, 60, 806-811.	2.8	27
87	Lymph Node Involvement in Treatment-Na \tilde{A} ve Prostate Cancer Patients: Correlation of PSMA PET/CT Imaging and Roach Formula in 280 Men in Radiotherapeutic Management. Journal of Nuclear Medicine, 2020, 61, 46-50.	2.8	26
88	Clinical outcome of PSMA-guided radiotherapy for patients with oligorecurrent prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 143-151.	3.3	25
89	Development of Novel PSMA Ligands for Imaging and Therapy with Copper Isotopes. Journal of Nuclear Medicine, 2020, 61, 70-79.	2.8	23
90	Qualitative and quantitative image analysis of CT and MR imaging in patients with neuroendocrine liver metastases in comparison to 68Ga-DOTATOC PET. European Journal of Radiology, 2015, 84, 1593-1600.	1,2	21

#	Article	IF	CITATIONS
91	Clinical characteristics, treatment outcomes and potential novel therapeutic options for patients with neuroendocrine carcinoma of the prostate. Oncotarget, 2019, 10, 17-29.	0.8	21
92	The impact of the extent of the bone involvement on overall survival and toxicity in mCRPC patients receiving [177Lu]Lu-PSMA-617: a WARMTH multicentre study. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 4067-4076.	3.3	20
93	Radiolabeled prostate-specific membrane antigen small-molecule inhibitors. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 168-180.	0.4	19
94	Impact of DNA damage repair defects on response to PSMA radioligand therapy in metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 2022, 25, 71-78.	2.0	19
95	First patient exceeding 5-year complete remission after 225Ac-PSMA-TAT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 311-312.	3.3	18
96	Physiological FAP-activation in a postpartum woman observed in oncological FAPI-PET/CT. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2059-2061.	3.3	18
97	The Role of Fibroblast Activation Protein Ligands in Oncologic PET Imaging. PET Clinics, 2021, 16, 341-351.	1.5	18
98	Prostate-specific membrane antigen and fibroblast activation protein distribution in prostate cancer: preliminary data on immunohistochemistry and PET imaging. Annals of Nuclear Medicine, 2022, 36, 293-301.	1.2	13
99	DNA damage in human whole blood caused by radiopharmaceuticals evaluated by the comet assay. Mutagenesis, 2019, 34, 239-244.	1.0	12
100	High prevalence of DNA damage repair gene defects and TP53 alterations in men with treatment-naÃ⁻ve metastatic prostate cancer –Results from a prospective pilot study using a 37 gene panel. Urologic Oncology: Seminars and Original Investigations, 2020, 38, 637.e17-637.e27.	0.8	12
101	Clinical experience with PSMA-Actinium-225 (Ac-225) radioligand therapy (RLT) in end-stage metastatic castration-resistant prostate cancer (mCRPC) patients Journal of Clinical Oncology, 2018, 36, 344-344.	0.8	11
102	Integration of CT urography improves diagnostic confidence of 68Ga-PSMA-11 PET/CT in prostate cancer patients. Cancer Imaging, 2017, 17, 30.	1.2	8
103	Predicting the Risk of Metastases by PSMA-PET/CT—Evaluation of 335 Men with Treatment-NaÃ⁻ve Prostate Carcinoma. Cancers, 2021, 13, 1508.	1.7	8
104	Impact of interventions and tumor stage on health-related quality of life in patients with hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 2019, 145, 2761-2769.	1.2	7
105	Semi-automatic 3D-volumetry of liver metastases from neuroendocrine tumors to improve combination therapy with 177Lu-DOTATOC and 90Y-DOTATOC. Diagnostic and Interventional Radiology, 2016, 22, 201-206.	0.7	6
106	Future trends in prostate cancer theranostics with PSMA ligands. Clinical and Translational Imaging, 2016, 4, 487-489.	1.1	6
107	Uptake of Prostate-Specific Membrane Antigen (PSMA) in adenoid cystic carcinoma – Is PSMA-PET-CT a helpful tool in radiation oncology?. Clinical and Translational Radiation Oncology, 2017, 7, 79-82.	0.9	6
108	Role of CT Density in PET/CT-Based Assessment of Lymphoma. Molecular Imaging and Biology, 2018, 20, 641-649.	1.3	6

#	Article	IF	CITATIONS
109	PSMA PET tumor-to-salivary glands ratio (PSG score) to predict response to Lu-177 PSMA radioligand therapy: An international multicenter retrospective study Journal of Clinical Oncology, 2022, 40, 5043-5043.	0.8	5
110	A Comparison of microCT and microPET for Evaluating Lymph Node Metastasis in a Rat Model. Molecular Imaging and Biology, 2016, 18, 243-248.	1.3	4
111	[18F]PSMA-1007 PET Improves the Diagnosis of Local Recurrence and Lymph Node Metastases in a Prostate Cancer Patient With a History of Bilateral Hip Arthroplasty. Clinical Genitourinary Cancer, 2018, 16, 111-113.	0.9	4
112	Fluorine-18 Prostate-specific Membrane Antigen-1007 Positron Emission Tomography/Computed Tomography and Multiparametric Magnetic Resonance Imaging in Diagnostics of Local Recurrence in a Prostate Cancer Patient After Recent Radical Prostatectomy. Clinical Genitourinary Cancer, 2018, 16, 103-105.	0.9	4
113	Impact of Computer-Aided CT and PET Analysis on Non-invasive T Staging in Patients with Lung Cancer and Atelectasis. Molecular Imaging and Biology, 2018, 20, 1044-1052.	1.3	3
114	Positive Multifocal PSMA PET/CT in a Patient With Prostate Cancer and Follicular Lymphoma. Clinical Nuclear Medicine, 2022, 47, e47-e48.	0.7	3
115	Ligand engineering for theranostic applications. Current Opinion in Chemical Biology, 2021, 63, 145-151.	2.8	3
116	Internal Radiation Therapy. Recent Results in Cancer Research, 2020, 216, 881-902.	1.8	3
117	A Role of Non-FDG Tracers in Lung Cancer?. Seminars in Nuclear Medicine, 2022, 52, 720-733.	2.5	3
118	Safety and efficacy of 177lu-PSMA-617 radioligand therapy in patients with mCRPC: A multicenter study Journal of Clinical Oncology, 2017, 35, 155-155.	0.8	2
119	Prognostic markers for overall survival and outcome to LuPSMA radionuclide treatment in patients with metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2020, 38, 5548-5548.	0.8	1
120	Aktuelle radiopharmazeutische Entwicklungen f $\tilde{A}\frac{1}{4}$ r die theranostische Anwendung. Radiopraxis, 2021, 14, E83-E98.	0.0	0