Marco Laurati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7819787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hybrid fibroin-nanocellulose composites for the consolidation of aged and historical silk. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127944.	4.7	11
2	Mechanical response and yielding transition of silk-fibroin and silk-fibroin/cellulose nanocrystals composite gels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128121.	4.7	7
3	Blunt-End Driven Re-entrant Ordering in Quasi Two-Dimensional Dispersions of Spherical DNA Brushes. ACS Nano, 2022, 16, 2133-2146.	14.6	4
4	Link between Morphology, Structure, and Interactions of Composite Microgels. Macromolecules, 2022, 55, 1834-1843.	4.8	6
5	Clusters in colloidal dispersions with a short-range depletion attraction: Thermodynamic identification and morphology. Journal of Colloid and Interface Science, 2022, 618, 442-450.	9.4	9
6	Colloidal and polymeric contributions to the yielding of dense microgel suspensions. Journal of Colloid and Interface Science, 2021, 587, 437-445.	9.4	8
7	Potential-invariant network structures in Asakura–Oosawa mixtures with very short attraction range. Journal of Chemical Physics, 2021, 155, 034903.	3.0	4
8	i-Rheo: determining the linear viscoelastic moduli of colloidal dispersions from step-stress measurements. Physical Chemistry Chemical Physics, 2020, 22, 3839-3848.	2.8	4
9	Rheology of colloidal and metallic glass formers. Colloid and Polymer Science, 2020, 298, 681-696.	2.1	4
10	AFM investigation of the influence of ethanol absorption on the surface structure and elasticity of polyamides. SN Applied Sciences, 2019, 1, 1.	2.9	1
11	Modelâ€Free Rheoâ€AFM Probes the Viscoelasticity of Tunable DNA Soft Colloids. Small, 2019, 15, e1904136.	10.0	12
12	Glassy dynamics in asymmetric binary mixtures of hard spheres. Physical Review E, 2019, 99, 042603.	2.1	33
13	Binary colloidal glasses: linear viscoelasticity and its link to the microscopic structure and dynamics. Soft Matter, 2019, 15, 2232-2244.	2.7	10
14	Effect of size disparity on the structure and dynamics of the small component in concentrated binary colloidal mixtures. Journal of Chemical Physics, 2019, 151, 164504.	3.0	6
15	Binary colloidal glasses under transient stress- and strain-controlled shear. Journal of Rheology, 2018, 62, 149-159.	2.6	19
16	A well defined glass state obtained by oscillatory shear. Journal of Rheology, 2018, 62, 197-207.	2.6	4
17	Different routes into the glass state for soft thermo-sensitive colloids. Soft Matter, 2018, 14, 5008-5018.	2.7	11
18	Different scenarios of dynamic coupling in glassy colloidal mixtures. Physical Chemistry Chemical Physics, 2018, 20, 18630-18638.	2.8	14

Marco Laurati

#	Article	IF	CITATIONS
19	Long-Lived Neighbors Determine the Rheological Response of Glasses. Physical Review Letters, 2017, 118, 018002.	7.8	52
20	Investigation of moderately turbid suspensions by heterodyne near field scattering. Soft Matter, 2017, 13, 5961-5969.	2.7	7
21	Size-Dependent Localization in Polydisperse Colloidal Glasses. Physical Review Letters, 2017, 119, 048003.	7.8	28
22	One- and two-component colloidal glasses under transient shear. European Physical Journal: Special Topics, 2017, 226, 3023-3037.	2.6	9
23	Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states. Nature Communications, 2016, 7, 11817.	12.8	51
24	i-Rheo: Measuring the materials' linear viscoelastic properties "in a step <i>â€</i> !. Journal of Rheology, 2016, 60, 649-660.	2.6	47
25	Start-up shear of concentrated colloidal hard spheres: Stresses, dynamics, and structure. Journal of Rheology, 2016, 60, 603-623.	2.6	50
26	Anomalous dynamics of intruders in a crowded environment of mobile obstacles. Nature Communications, 2016, 7, 11133.	12.8	114
27	Structure of colloidal gels at intermediate concentrations: the role of competing interactions. Soft Matter, 2016, 12, 9303-9313.	2.7	19
28	Different mechanisms for dynamical arrest in largely asymmetric binary mixtures. Physical Review E, 2015, 91, 032308.	2.1	33
29	Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities. Scientific Reports, 2015, 5, 11884.	3.3	78
30	Effect of polar solvents on the crystalline phase of polyamides. Polymer, 2014, 55, 2867-2881.	3.8	17
31	Transient dynamics during stress overshoots in binary colloidal glasses. Soft Matter, 2014, 10, 6546-6555.	2.7	30
32	Plastic rearrangements in colloidal gels investigated by LAOS and LS-Echo. Journal of Rheology, 2014, 58, 1395-1417.	2.6	36
33	Time-dependent flow in arrested states – transient behaviour. European Physical Journal: Special Topics, 2013, 222, 2803-2817.	2.6	21
34	Yielding of binary colloidal glasses. Soft Matter, 2013, 9, 4524.	2.7	56
35	Residual Stresses in Glasses. Physical Review Letters, 2013, 110, 215701.	7.8	95
36	Glasses of dynamically asymmetric binary colloidal mixtures: Quiescent properties and dynamics under shear. AIP Conference Proceedings, 2013, , .	0.4	11

Marco Laurati

#	Article	IF	CITATIONS
37	Dynamics of Water Absorbed in Polyamides. Macromolecules, 2012, 45, 1676-1687.	4.8	61
38	Transient dynamics in dense colloidal suspensions under shear: shear rate dependence. Journal of Physics Condensed Matter, 2012, 24, 464104.	1.8	31
39	Yielding of Hard-Sphere Glasses during Start-Up Shear. Physical Review Letters, 2012, 108, 098303.	7.8	130
40	Nonlinear rheology of colloidal gels with intermediate volume fraction. Journal of Rheology, 2011, 55, 673-706.	2.6	150
41	Small-Angle Neutron Scattering of Percolative Perfluoropolyether Water in Oil Microemulsions. Journal of Physical Chemistry B, 2010, 114, 3855-3862.	2.6	4
42	Structure, dynamics, and rheology of colloid-polymer mixtures: From liquids to gels. Journal of Chemical Physics, 2009, 130, 134907.	3.0	134
43	From equilibrium to steady state: the transient dynamics of colloidal liquids under shear. Journal of Physics Condensed Matter, 2008, 20, 404210.	1.8	97
44	Asymmetric poly(ethylene-alt-propylene)-poly(ethylene oxide) micelles: A system with starlike morphology and interactions. Physical Review E, 2007, 76, 041503.	2.1	37
45	Small-Angle Neutron Scattering of Mixed Ionic Perfluoropolyether Micellar Solutions. Journal of Physical Chemistry B, 2007, 111, 1348-1353.	2.6	1
46	Starlike Micelles with Starlike Interactions: A Quantitative Evaluation of Structure Factors and Phase Diagram. Physical Review Letters, 2005, 94, 195504.	7.8	65
47	Poly(ethylene-alt-propylene)–poly(ethylene oxide) diblock copolymer micelles: a colloidal model system withtunable softness. Journal of Physics Condensed Matter, 2004, 16, S3821-S3834.	1.8	21
48	SANS analysis of perfluoropolyether water-in-oil microemulsions by hard sphere and adhesive hard sphere potentials. Applied Physics A: Materials Science and Processing, 2002, 74, s377-s379.	2.3	7
49	Tuning the Effective Interactions between Spherical Double-Stranded DNA Brushes. Macromolecules, 0, , .	4.8	1
50	Reciprocal Space Study of Brownian Yet Non-Gaussian Diffusion of Small Tracers in a Hard-Sphere Glass. Frontiers in Physics, 0, 10, .	2.1	5