List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7819448/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inter-laboratory validation of an ISO test method for measuring enzyme activities in soil samples using colorimetric substrates. Environmental Science and Pollution Research, 2022, 29, 29348-29357.	2.7	8
2	Academic expertise in assisting private companies in the fields of environment and environmental toxicology: the role of individual expertise. Environmental Science and Pollution Research, 2021, 28, 1283-1286.	2.7	0
3	Introducing Grasslands into Crop Rotations, a Way to Restore Microbiodiversity and Soil Functions. Agriculture (Switzerland), 2021, 11, 909.	1.4	3
4	Effect of Multiple Stresses, Organic Amendment and Compaction, on the Fate and Impact of Isoproturon in Soil. Environments - MDPI, 2020, 7, 79.	1.5	2
5	Identification of new microbial functional standards for soil quality assessment. Soil, 2020, 6, 17-34.	2.2	39
6	Earthworms Mitigate Pesticide Effects on Soil Microbial Activities. Frontiers in Microbiology, 2019, 10, 1535.	1.5	15
7	Effects of two common fungicides on the reproduction of Aporrectodea caliginosa in natural soil. Ecotoxicology and Environmental Safety, 2019, 181, 518-524.	2.9	18
8	BRC4Env, a network of Biological Resource Centres for research in environmental and agricultural sciences. Environmental Science and Pollution Research, 2018, 25, 33849-33857.	2.7	8
9	How to assess the feeding activity in ecotoxicological laboratory tests using enchytraeids?. Environmental Science and Pollution Research, 2018, 25, 33844-33848.	2.7	8
10	Biochem-Env: a platform of biochemistry for research in environmental and agricultural sciences. Environmental Science and Pollution Research, 2018, 25, 6154-6157.	2.7	7
11	ECOTOX, new questions for terrestrial and aquatic ecotoxicology. Environmental Science and Pollution Research, 2018, 25, 33841-33843.	2.7	2
12	RECOTOX, a French initiative in ecotoxicology-toxicology to monitor, understand and mitigate the ecotoxicological impacts of pollutants in socioagroecosystems. Environmental Science and Pollution Research, 2018, 25, 33882-33894.	2.7	5
13	Aporrectodea caliginosa, a relevant earthworm species for a posteriori pesticide risk assessment: current knowledge and recommendations for culture and experimental design. Environmental Science and Pollution Research, 2018, 25, 33867-33881.	2.7	44
14	How to Integrate Experimental Research Approaches in Ecological and Environmental Studies: AnaEE France as an Example. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	17
15	Root penetration in deep soil layers stimulates mineralization of millennia-old organic carbon. Soil Biology and Biochemistry, 2018, 124, 150-160.	4.2	72
16	Formation of 2,4-D bound residues in soils: New insights into microbial metabolism. Science of the Total Environment, 2017, 584-585, 715-722.	3.9	13
17	Fate and impact of pesticides: new directions to explore. Environmental Science and Pollution Research, 2017, 24, 6841-6843.	2.7	4
18	Differences in sensitivity between earthworms and enchytraeids exposed to two commercial fungicides. Ecotoxicology and Environmental Safety, 2017, 140, 177-184.	2.9	28

#	Article	IF	CITATIONS
19	ECOTOX, the INRA's network of ecotoxicologists, a major structure involved for the coordination and structuring of the French research in ecotoxicology. Environmental Science and Pollution Research, 2016, 23, 2969-2973.	2.7	1
20	Evaluation of the transfer and the accumulation of microcystins in tomato (Solanum lycopersicum) Tj ETQc radiolabeled microcystin-LR (14 C-MC-LR). Science of the Total Environment, 2016, 541, 1052-1058.	0 0 0 rgBT /Ov 3.9	erlock 10 Tf 5 58
21	Oxidoreductases provide a more generic response to metallic stressors (Cu and Cd) than hydrolases in soil fungi: new ecotoxicological insights. Environmental Science and Pollution Research, 2016, 23, 3036-3041.	2.7	6
22	Evaluation of phytotoxicity and ecotoxicity potentials of a cyanobacterial extract containing microcystins under realistic environmental concentrations and in a soil–plant system. Chemosphere, 2015, 128, 332-340.	4.2	46
23	Earthworms in a 15 years agricultural trial. Applied Soil Ecology, 2015, 88, 1-8.	2.1	30
24	A coordinated set of ecosystem research platforms open to international research in ecotoxicology, AnaEE-France. Environmental Science and Pollution Research, 2015, 22, 16215-16228.	2.7	8
25	Soil irrigation with water and toxic cyanobacterial microcystins accelerates tomato development. Environmental Chemistry Letters, 2015, 13, 447-452.	8.3	19
26	Soil irrigation with toxic cyanobacterial microcystins increases soil nitrification potential. Environmental Chemistry Letters, 2015, 13, 459-463.	8.3	15
27	Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biology and Biochemistry, 2015, 80, 146-155.	4.2	210
28	Dynamics of the toxic cyanobacterial microcystin-leucine-arginine peptide in agricultural soil. Environmental Chemistry Letters, 2014, 12, 535-541.	8.3	26
29	Characterization of chlordecone-tolerant fungal populations isolated from long-term polluted tropical volcanic soil in the French West Indies. Environmental Science and Pollution Research, 2014, 21, 4914-4927.	2.7	24
30	Effects of pesticides on soil enzymes: a review. Environmental Chemistry Letters, 2014, 12, 257-273.	8.3	175
31	Cyanobacterial toxins: Modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere, 2014, 96, 1-15.	4.2	269
32	Metal Contamination Disturbs Biochemical and Microbial Properties of Calcareous Agricultural Soils of the Mediterranean Area. Archives of Environmental Contamination and Toxicology, 2013, 64, 388-398.	2.1	18
33	Earthworms highly increase ciprofloxacin mineralization in soils. Environmental Chemistry Letters, 2013, 11, 127-133.	8.3	31
34	Application of standard statistical methods in the analysis of complex data generated from soil bioassays to assess the impacts of agrochemical-containing sludge amendments. Toxicological and Environmental Chemistry, 2013, 95, 4-25.	0.6	1
35	Biotransformation of Trichoderma spp. and Their Tolerance to Aromatic Amines, a Major Class of Pollutants. Applied and Environmental Microbiology, 2013, 79, 4719-4726.	1.4	29
36	New Insights into the Use of Filamentous Fungi and Their Degradative Enzymes as Tools for Assessing the Ecotoxicity of Contaminated Soils During Bioremediation Processes. Soil Biology, 2013, , 419-432.	0.6	5

#	Article	IF	CITATIONS
37	ISTA 14—Impact of antibiotics from pig slurry on soil microbial communities, including the basidiomycete <i>Trametes versicolor</i> . Environmental Toxicology, 2012, 27, 129-136.	2.1	6
38	Assessing impacts of copper on soil enzyme activities in regard to their natural spatiotemporal variation under long-term different land uses. Soil Biology and Biochemistry, 2012, 49, 150-156.	4.2	63
39	Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biology and Biochemistry, 2012, 51, 73-80.	4.2	92
40	Secretion profiles of fungi as potential tools for metal ecotoxicity assessment: A study of enzymatic system in Trametes versicolor. Chemosphere, 2011, 82, 340-345.	4.2	12
41	No evidence for effect of soil compaction on the degradation and impact of isoproturon. Environmental Chemistry Letters, 2011, 9, 145-150.	8.3	13
42	Favouring the bioavailability of Zn and Cu to enhance the production of lignin-modifying enzymes in Trametes versicolor cultures. Bioresource Technology, 2011, 102, 3103-3109.	4.8	9
43	Insights into the development of fungal biomarkers for metal ecotoxicity assessment: Case of <i>Trametes versicolor</i> exposed to copper. Environmental Toxicology and Chemistry, 2010, 29, 902-908.	2.2	14
44	Fate of 17β-estradiol in terrestrial model ecosystems amended with contaminated composted biosolids. Environmental Chemistry Letters, 2009, 7, 369-373.	8.3	3
45	Soil Bioremediation Strategies Based on the Use of Fungal Enzymes. Soil Biology, 2009, , 123-149.	0.6	16
46	Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiologica, 2008, 53, 289-294.	1.1	71
47	Concentrations and specific loads of glyphosate, diuron, atrazine, nonylphenol and metabolites thereof in French urban sewage sludge. Chemosphere, 2007, 69, 1368-1373.	4.2	45
48	Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Engineering, Design and Selection, 2006, 19, 77-84.	1.0	136
49	Identification and Formation Pathway of Laccase-Mediated Oxidation Products Formed from Hydroxyphenylureas. Journal of Agricultural and Food Chemistry, 2006, 54, 5046-5054.	2.4	15
50	Fate of herbicides and nonylphenol in soil–plant–water systems amended with contaminated sewage sludge. Environmental Chemistry Letters, 2006, 4, 63-67.	8.3	8
51	Phthalic acid and benzo[a]pyrene in soil–plant–water systems amended with contaminated sewage sludge. Environmental Chemistry Letters, 2006, 4, 201-206.	8.3	6
52	Expression of laccase IIIb from the white-rot fungus Trametes versicolor in the yeast Yarrowia lipolytica for environmental applications. Applied Microbiology and Biotechnology, 2005, 66, 450-456.	1.7	106
53	Oligomeric compounds formed from 2,5-xylidine (2,5-dimethylaniline) are potent enhancers of laccase production in Trametes versicolor ATCC 32745. Applied Microbiology and Biotechnology, 2005, 68, 251-258.	1.7	32
54	Incorporation of pesticides by soil micro-organisms as a way of bound residues formation. Environmental Chemistry Letters, 2004, 2, 27-30.	8.3	18

#	Article	IF	CITATIONS
55	Fungal laccases: from structure-activity studies to environmental applications. Environmental Chemistry Letters, 2003, 1, 145-148.	8.3	46
56	Fate of the veterinary medicine ivermectin in soil. Environmental Chemistry Letters, 2003, 1, 131-134.	8.3	19
57	Effect of the endectocide ivermectin on filamentous fungi. Environmental Chemistry Letters, 2003, 1, 215-218.	8.3	7
58	Effect of Nonylphenol Surfactants on Fungi following the Application of Sewage Sludge on Agricultural Soils. Journal of Environmental Quality, 2003, 32, 1269.	1.0	35
59	Bioremediation and Phytoremediation of Industrial PAH-Polluted Soils. Polycyclic Aromatic Compounds, 2002, 22, 1011-1043.	1.4	44
60	Interference of Soil Contaminants with Laccase Activity During the Transformation of Complex Mixtures of Polycyclic Aromatic Hydrocarbons in Liquid Media. Polycyclic Aromatic Compounds, 2002, 22, 673-688.	1.4	10
61	Crystal Structure of a Four-Copper Laccase Complexed with an Arylamine:Â Insights into Substrate Recognition and Correlation with Kineticsâ€,‡. Biochemistry, 2002, 41, 7325-7333.	1.2	484
62	Isolation and characterization of efficient isoxaben-transformingMicrobacteriumsp strains from four European soils. Pest Management Science, 2002, 58, 1229-1235.	1.7	6
63	Enhanced production of laccase in the fungus Trametes versicolor by the addition of xenobiotics. Biotechnology Letters, 2002, 24, 139-142.	1.1	82
64	Purification and preliminary crystallographic study ofTrametes versicolorlaccase in its native form. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 319-321.	2.5	21
65	Inoculation of Filamentous Fungi in Manufactured Gas Plant Site Soils and PAH Transformation. Polycyclic Aromatic Compounds, 2001, 18, 397-414.	1.4	25
66	Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. Journal of Membrane Science, 2000, 180, 103-113.	4.1	109
67	Cleavage of the Diketonitrile Derivative of the Herbicide Isoxaflutole by Extracellular Fungal Oxidases. Journal of Agricultural and Food Chemistry, 2000, 48, 4529-4534.	2.4	45
68	Biotransformation of bezo[a]pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnology Letters, 1998, 20, 1101-1104.	1.1	47
69	Title is missing!. Biotechnology Letters, 1998, 12, 725-728.	0.5	7
70	Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium. Soil Biology and Biochemistry, 1997, 29, 1321-1324.	4.2	44
71	Chlorinated hydrocarbons in eggs of grey heron (Ardea cinerea L.) in France (Lac de Grandlieu). Chemosphere, 1997, 35, 1003-1009.	4.2	12
72	Biotransformation ofs-Triazine Herbicides and Related Degradation Products in Liquid Cultures by the White Rot FungusPhanerochaete chrysosporium. Pest Management Science, 1997, 49, 169-177.	0.7	45

CHRISTIAN MOUGIN

#	Article	IF	CITATIONS
73	Residues of chlorinated pesticides in eggs of the gray heron (Ardea cinerea L.): Contribution of capillary gas chromatography ion-trap mass detection. Journal of High Resolution Chromatography, 1996, 19, 62-64.	2.0	10
74	On-line supercritical fluid extraction and high performance liquid chromatography for determination of triazine compounds in soil. Journal of High Resolution Chromatography, 1996, 19, 700-702.	2.0	13
75	Biotransformation of the Insecticide Lindane by the White Rot BasidiomycetePhanerochaetechrysosporium. Pest Management Science, 1996, 47, 51-59.	0.7	63
76	Biotransformation of the Herbicide Atrazine by the White Rot Fungus <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 1994, 60, 705-708.	1.4	112
77	Interactions of various agrochemicals with cytochrome P-450-dependent monooxygenases of wheat cells. Pesticide Biochemistry and Physiology, 1991, 40, 1-11.	1.6	60
78	Effects of N,N′-bis-(4-trifluoromethylphenyl)-urea on isolated plant mitochondria and thylakoid membranes. Phytochemistry, 1991, 30, 733-738.	1.4	6
79	Hydroxylation and N-demethylation of chlorotoluron by wheat microsomal enzymes. Plant Science, 1990, 66, 195-203.	1.7	67
80	Pesticide-Derived Aromatic Amines and Their Biotransformation. , 0, , .		7
81	Fate of Pesticides in Soils: Toward an Integrated Approach of Influential Factors. , 0, , .		22
82	Interference of Soil Contaminants with Laccase Activity During the Transformation of Complex Mixtures of Polycyclic Aromatic Hydrocarbons in Liquid Media. , 0, .		7