
Saiful I Khondaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7819115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	16.0	3,063
2	Ultralight Multiwalled Carbon Nanotube Aerogel. ACS Nano, 2010, 4, 7293-7302.	7.3	477
3	Dispersion of Pristine Carbon Nanotubes Using Conjugated Block Copolymers. Advanced Materials, 2008, 20, 2055-2060.	11.1	228
4	Photoluminescence Quenching in Single-Layer MoS ₂ via Oxygen Plasma Treatment. Journal of Physical Chemistry C, 2014, 118, 21258-21263.	1.5	228
5	Photoluminescence quenching in gold - MoS2 hybrid nanoflakes. Scientific Reports, 2014, 4, 5575.	1.6	217
6	Tuning the electrical property <i>via</i> defect engineering of single layer MoS ₂ by oxygen plasma. Nanoscale, 2014, 6, 10033-10039.	2.8	202
7	Ultrahigh Density Alignment of Carbon Nanotube Arrays by Dielectrophoresis. ACS Nano, 2011, 5, 1739-1746.	7.3	190
8	Position dependent photodetector from large area reduced graphene oxide thin films. Applied Physics Letters, 2010, 96, .	1.5	177
9	Oxygenated Functional Group Density on Graphene Oxide: Its Effect on Cell Toxicity. Particle and Particle Systems Characterization, 2013, 30, 148-157.	1.2	173
10	Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>s</mml:mi><mml:msup><mml:mi>p</mml:mi><mml:mn>2</mml:mn> Physical Review B, 2012, 86, .</mml:msup></mml:mrow></mml:math>	<td>p>¹⁷⁰mml:mro</td>	p> ¹⁷⁰ mml:mro
11	Space charge limited conduction with exponential trap distribution in reduced graphene oxide sheets. Applied Physics Letters, 2010, 97, .	1.5	142
12	Reduced Graphene Oxide/Copper Phthalocyanine Composite and Its Optoelectrical Properties. Journal of Physical Chemistry C, 2010, 114, 15129-15135.	1.5	135
13	High performance organic phototransistor based on regioregular poly(3-hexylthiophene). Nanotechnology, 2010, 21, 325201.	1.3	134
14	Anchoring Ceria Nanoparticles on Reduced Graphene Oxide and Their Electronic Transport Properties. Journal of Physical Chemistry C, 2011, 115, 24494-24500.	1.5	125
15	Thermionic Emission and Tunneling at Carbon Nanotube–Organic Semiconductor Interface. ACS Nano, 2012, 6, 4993-4999.	7.3	116
16	Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure. Scientific Reports, 2016, 6, 25456.	1.6	116
17	High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology, 2010, 21, 165202.	1.3	112
18	Semiconducting Enriched Carbon Nanotube Aligned Arrays of Tunable Density and Their Electrical Transport Properties. ACS Nano, 2011, 5, 6297-6305.	7.3	91

SAIFUL I KHONDAKER

#	Article	IF	CITATIONS
19	Fabrication of nanometer-spaced electrodes using gold nanoparticles. Applied Physics Letters, 2002, 81, 4613-4615.	1.5	90
20	A General Strategy to Disperse and Functionalize Carbon Nanotubes Using Conjugated Block Copolymers. Advanced Functional Materials, 2009, 19, 479-483.	7.8	88
21	Coulomb blockade and hopping conduction in graphene quantum dots array. Physical Review B, 2011, 83, .	1.1	68
22	Solvothermal Synthesis of High-Aspect Ratio Alloy Semiconductor Nanowires: Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S, a Case Study. Journal of Physical Chemistry C, 2009, 113, 3617-3624.	1.5	66
23	Dispersion of carbon nanotubes and polymer nanocomposite fabrication using trifluoroacetic acid as a co-solvent. Nanotechnology, 2007, 18, 415606.	1.3	62
24	Electron transport through single phenylene–ethynylene molecular junctions at low temperature. Applied Physics Letters, 2004, 85, 645-647.	1.5	58
25	Local-gated single-walled carbon nanotube field effect transistors assembled by AC dielectrophoresis. Nanotechnology, 2008, 19, 175202.	1.3	57
26	High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Applied Physics Letters, 2010, 96, .	1.5	57
27	NanoEHS – defining fundamental science needs: no easy feat when the simple itself is complex. Environmental Science: Nano, 2016, 3, 15-27.	2.2	53
28	The fabrication of single-electron transistors using dielectrophoretic trapping of individual gold nanoparticles. Nanotechnology, 2010, 21, 095204.	1.3	50
29	Two-dimensional lateral heterojunction through bandgap engineering of MoS ₂ via oxygen plasma. Journal of Physics Condensed Matter, 2016, 28, 364002.	0.7	47
30	Bandgap Engineering of MoS ₂ Flakes via Oxygen Plasma: A Layer Dependent Study. Journal of Physical Chemistry C, 2016, 120, 13801-13806.	1.5	44
31	Near-infrared photoresponse sensitization of solvent additive processed poly(3-hexylthiophene)/fullerene solar cells by a low band gap polymer. Applied Physics Letters, 2012, 101, 053308.	1.5	41
32	Ordered conjugated polymer nano- and microstructures: Structure control for improved performance of organic electronics. Nano Today, 2014, 9, 705-721.	6.2	37
33	Solution processed large area field effect transistors from dielectrophoreticly aligned arrays of carbon nanotubes. Applied Physics Letters, 2009, 94, 113104.	1.5	36
34	Fabrication of Organic Field Effect Transistor by Directly Grown Poly(3 Hexylthiophene) Crystalline Nanowires on Carbon Nanotube Aligned Array Electrode. ACS Applied Materials & Interfaces, 2011, 3, 1180-1185.	4.0	36
35	Synthesis and Characterization of Reduced Graphene Oxide and Their Application in Dye-Sensitized Solar Cells. ChemEngineering, 2019, 3, 7.	1.0	33
36	Schottky diode via dielectrophoretic assembly of reduced graphene oxide sheets between dissimilar metal contacts. New Journal of Physics, 2011, 13, 035021.	1.2	32

#	Article	IF	CITATIONS
37	Structural Evolution of Reduced Graphene Oxide of Varying Carbon sp ² Fractions Investigated via Coulomb Blockade Transport. Journal of Physical Chemistry C, 2013, 117, 26776-26782.	1.5	30
38	Uniform Vapor-Pressure-Based Chemical Vapor Deposition Growth of MoS ₂ Using MoO ₃ Thin Film as a Precursor for Coevaporation. ACS Omega, 2018, 3, 18943-18949.	1.6	30
39	Scalable lateral heterojunction by chemical doping of 2D TMD thin films. Scientific Reports, 2020, 10, 12970.	1.6	30
40	Centimeter-Scale 2D van der Waals Vertical Heterostructures Integrated on Deformable Substrates Enabled by Gold Sacrificial Layer-Assisted Growth. Nano Letters, 2017, 17, 6157-6165.	4.5	28
41	Controlled electroplating and electromigration in nickel electrodes for nanogap formation. Nanotechnology, 2010, 21, 445304.	1.3	26
42	One pot synthesis of RGO/PbS nanocomposite and its near infrared photoresponse study. Applied Physics A: Materials Science and Processing, 2012, 107, 995-1001.	1.1	24
43	Near-infrared photoresponse in single-walled carbon nanotube/polymer composite films. Carbon, 2010, 48, 1539-1544.	5.4	22
44	Sub 10nm conjugated polymer transistors for chemical sensing. Sensors and Actuators B: Chemical, 2006, 113, 539-544.	4.0	21
45	Low pressure sulfurization and characterization of multilayer MoS2 for potential applications in supercapacitors. Energy, 2020, 203, 117918.	4.5	21
46	Correlated electrical breakdown in arrays of high density aligned carbon nanotubes. Applied Physics Letters, 2011, 98, 243121.	1.5	20
47	Enhanced electrochemical performance of solution-processed single-wall carbon nanotube reinforced polyvinyl alcohol nanocomposite synthesized via solution-cast method. Nano Express, 2020, 1, 030013.	1.2	20
48	Diffusion mediated photoconduction in multiwalled carbon nanotube films. Journal of Applied Physics, 2009, 106, 074307.	1.1	19
49	High-performance short channel organic transistors using densely aligned carbon nanotube array electrodes. Applied Physics Letters, 2012, 100, .	1.5	18
50	High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes. Nanoscale, 2014, 6, 4896.	2.8	18
51	Controlled fabrication of single electron transistors from single-walled carbon nanotubes. Applied Physics Letters, 2008, 92, 262107.	1.5	15
52	Evaluating Defects in Solution-Processed Carbon Nanotube Devices <i>via</i> Low-Temperature Transport Spectroscopy. ACS Nano, 2010, 4, 2659-2666.	7.3	14
53	Fabrication of Aligned Carbon Nanotube Array Electrodes for Organic Electronic Devices. Materials Express, 2011, 1, 80-85.	0.2	14
54	The electronic transport properties of ternary Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S nanowire networks. Nanotechnology, 2009, 20, 445204.	1.3	12

SAIFUL I KHONDAKER

#	Article	IF	CITATIONS
55	The effect of carbon nanotube/organic semiconductor interfacial area on the performance of organic transistors. Applied Physics Letters, 2012, 101, .	1.5	12
56	A general approach for high yield fabrication of CMOS-compatible all-semiconducting carbon nanotube field effect transistors. Nanotechnology, 2012, 23, 125201.	1.3	12
57	Towards parallel fabrication of single electron transistors using carbon nanotubes. Nanoscale, 2015, 7, 9786-9792.	2.8	12
58	Electrical properties tunability of large area MoS2 thin films by oxygen plasma treatment. Applied Physics Letters, 2020, 116, .	1.5	12
59	Low pressure CVD growth of 2D PdSe ₂ thin film and its application in PdSe ₂ -MoSe ₂ vertical heterostructure. 2D Materials, 2022, 9, 025025.	2.0	12
60	Electrical transport properties of peptide nanotubes coated with gold nanoparticles via peptide-induced biomineralization. Nanotechnology, 2011, 22, 095202.	1.3	11
61	Recent progress in parallel fabrication of individual single walled carbon nanotube devices using dielectrophoresis. Materials Express, 2014, 4, 263-278.	0.2	11
62	High yield assembly and electron transport investigation of semiconducting-rich local-gated single-walled carbon nanotube field effect transistors. Nanotechnology, 2011, 22, 415201.	1.3	10
63	CVD Growth of Monolayer MoS2 on Sapphire Substrates by using MoO3 Thin Films as a Precursor for Co-Evaporation. MRS Advances, 2019, 4, 587-592.	0.5	8
64	Rapid Degradation of the Electrical Properties of 2D MoS ₂ Thin Films under Long-Term Ambient Exposure. ACS Omega, 2021, 6, 24075-24081.	1.6	8
65	Can Metals Other than Au be Used for Large Area Exfoliation of MoS ₂ Monolayers?. Advanced Materials Interfaces, 2022, 9, .	1.9	8
66	Optoelectronic Properties of MoS2/Graphene Heterostructures Prepared by Dry Transfer for Light-Induced Energy Applications. Journal of Electronic Materials, 2022, 51, 4257-4269.	1.0	8
67	Temperature dependent charge transport in poly(3-hexylthiophene)-block polystyrene copolymer field-effect transistor. Synthetic Metals, 2012, 162, 1531-1536.	2.1	6
68	Charge Transfer Doping of 2D PdSe ₂ Thin Film and Its Application in Fabrication of Heterostructures. Advanced Electronic Materials, 2021, 7, 2001057.	2.6	6
69	Correlated KPFM and TERS imaging to elucidate defect-induced inhomogeneities in oxygen plasma treated 2D MoS2 nanosheets. Journal of Applied Physics, 2022, 131, .	1.1	6
70	Dielectrophoretic Assembly of Single Gold Nanoparticle into Nanogap Electrodes. Journal of Nanoscience and Nanotechnology, 2008, 8, 3427-3433.	0.9	5
71	Negative differential resistance in ZnO coated peptide nanotube. Applied Physics A: Materials Science and Processing, 2013, 112, 305-310.	1.1	5
72	Huge volume expansion and structural transformation of carbon nanotube aligned arrays during electrical breakdown in vacuum. Carbon, 2012, 50, 1635-1643.	5.4	4

SAIFUL I KHONDAKER

#	Article	IF	CITATIONS
73	Lower activation energy in organic field effect transistors with carbon nanotube contacts. Solid-State Electronics, 2014, 99, 55-58.	0.8	4
74	Comparative study of organic transistors with different graphene electrodes fabricated using a simple patterning method. Applied Physics Letters, 2017, 111, .	1.5	4
75	Elucidation of the growth mechanism of MoS2 during the CVD process. MRS Advances, 2019, 4, 581-586.	0.5	3
76	Tailoring the Potential Landscape and Electrical Properties of 2D MoS ₂ using Gold Nanostructures of Different Coverage Density. Journal of Physical Chemistry C, 2020, 124, 6461-6466.	1.5	3
77	Synthesis of highly dense MoO2/MoS2 core–shell nanoparticles via chemical vapor deposition. Nanotechnology, 2021, 32, 055605.	1.3	3
78	High photoresponsivity and light-induced carrier conversion in RGO/TSCuPc hybrid phototransistors. Journal of Materials Research, 2018, 33, 3999-4006.	1.2	1
79	Parallel Fabrication of CMOS Compatible Single Walled Carbon Nanotube Devices. Reviews in Nanoscience and Nanotechnology, 2012, 1, 187-199.	0.4	Ο