Chunlin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7819113/publications.pdf Version: 2024-02-01

CHUNUN 7ΗΛΟ

#	Article	IF	CITATIONS
1	Elevating electrical properties of (K, Na)NbO ₃ ceramics via cold sintering process and postâ€annealing. Journal of the American Ceramic Society, 2022, 105, 461-468.	1.9	18
2	Grain size effects and structure origin in high-performance BaTiO3-based piezoceramics with large grains. Journal of the European Ceramic Society, 2022, 42, 2764-2771.	2.8	19
3	Influence of incongruent dissolution-precipitation on 8YSZ ceramics during cold sintering process. Journal of the European Ceramic Society, 2022, 42, 2362-2369.	2.8	7
4	Understanding the enhanced electrocaloric effect in BaTiO3-based ferroelectrics at critical state. Acta Materialia, 2022, 227, 117735.	3.8	16
5	Large electrocaloric effect under electric field behavior in potassium sodium niobate ceramics with incompletely overlapped phase boundaries. Journal of Materials Chemistry A, 2022, 10, 5262-5272.	5.2	13
6	Multiscale Structure Engineering for High-Performance Pb-Free Piezoceramics. Accounts of Materials Research, 2022, 3, 461-471.	5.9	29
7	Manganese oxides activated peroxymonosulfate for ciprofloxacin removal: Effect of oxygen vacancies and chemical states. Chemosphere, 2022, 299, 134437.	4.2	14
8	Tuning the electrocaloric effect by tailoring phase fraction in BaTiO3-based ferroelectrics. Journal of the European Ceramic Society, 2022, 42, 5172-5178.	2.8	8
9	Enhanced piezoelectric property in Mnâ€doped K _{0.5} Na _{0.5} NbO ₃ ceramics via cold sintering process and KMnO ₄ solution. Journal of the American Ceramic Society, 2022, 105, 5774-5782.	1.9	10
10	Evolution of multilevel structures and electrical properties in potassium-sodium niobate-based lead-free piezoceramics by anionic fluorine engineering. Journal of Alloys and Compounds, 2022, 918, 165604.	2.8	7
11	Relaxor behavior of potassium sodium niobate ceramics by domain evolution. Journal of the European Ceramic Society, 2021, 41, 335-343.	2.8	13
12	Large electrocaloric response with superior temperature stability in NaNbO ₃ -based relaxor ferroelectrics benefiting from the crossover region. Journal of Materials Chemistry A, 2021, 9, 2806-2814.	5.2	32
13	Enhanced electrocaloric effect in compositional driven potassium sodium niobateâ€based relaxor ferroelectrics. Journal of Materials Research, 2021, 36, 1142-1152.	1.2	14
14	Symmetry of the Underlying Lattice in (K,Na)NbO ₃ -Based Relaxor Ferroelectrics with Large Electromechanical Response. ACS Applied Materials & Interfaces, 2021, 13, 7461-7469.	4.0	30
15	HighlyÂTunable Multifunctional BaTiO3-Based Ferroelectrics via Site Selective Doping Strategy. Acta Materialia, 2021, 209, 116792.	3.8	33
16	High performance BiFe0.9Co0.1O3 doped KNN-based lead-free ceramics for acoustic energy harvesting. Nano Energy, 2021, 84, 105900.	8.2	41
17	Defect Management and Multiâ€Mode Optoelectronic Manipulations via Photoâ€Thermochromism in Smart Windows. Laser and Photonics Reviews, 2021, 15, 2100211.	4.4	66
18	One simple approach, two remarkable enhancements: Manipulating defect dipoles and local stress of (K, Na)NbO3-based ceramics. Acta Materialia, 2021, 221, 117351.	3.8	14

CHUNLIN ZHAO

#	Article	IF	CITATIONS
19	Electrocaloric refrigeration capacity in BNT-based ferroelectrics benefiting from low depolarization temperature and high breakdown electric field. Journal of Materials Chemistry A, 2021, 9, 12772-12781.	5.2	11
20	Decoding the relationship between the electrocaloric strength and phase structure in perovskite ferroelectrics towards high performance. Journal of Materials Chemistry C, 2021, 9, 2063-2072.	2.7	11
21	Enhanced electrocaloric effect in compositional driven potassium sodium niobate-based relaxor ferroelectrics. Journal of Materials Research, 2021, 36, 1-11.	1.2	Ο
22	Decoding the Role of Diffused Multiphase Coexistence in Potassium Sodium Niobate-Based Ceramics with Nanodomains for Enhanced Piezoelectric Devices. ACS Applied Nano Materials, 2020, 3, 953-961.	2.4	18
23	Secondâ€orderâ€transition like characteristic contributes to strain temperature stability in (K, Na)NbO 3 â€based materials. Journal of the American Ceramic Society, 2020, 103, 2509-2519.	1.9	3
24	New Role of Relaxor Multiphase Coexistence in Potassium Sodium Niobate Ceramics: Reduced Electric Field Dependence of Strain Temperature Stability. ACS Applied Materials & Interfaces, 2020, 12, 49822-49829.	4.0	11
25	Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InformaÄnÃ-Materiály, 2020, 2, 1163-1190.	8.5	112
26	Multifunctional BaTiO ₃ -Based Relaxor Ferroelectrics toward Excellent Energy Storage Performance and Electrostrictive Strain Benefiting from Crossover Region. ACS Applied Materials & Interfaces, 2020, 12, 23885-23895.	4.0	127
27	Large Electrocaloric Effect in (Bi _{0.5} Na _{0.5})TiO ₃ -Based Relaxor Ferroelectrics. ACS Applied Materials & Interfaces, 2020, 12, 33934-33940.	4.0	58
28	Poling temperatureâ€insensitive piezoelectric constant of highâ€performance potassium sodium niobate piezoceramics. Journal of the American Ceramic Society, 2020, 103, 4402-4410.	1.9	12
29	Potassium sodium niobate based lead-free ceramic for high-frequency ultrasound transducer applications. Journal of Materiomics, 2020, 6, 513-522.	2.8	18
30	Superior Electrostrictive Effect in Relaxor Potassium Sodium Niobate Based Ferroelectrics. ACS Applied Materials & Interfaces, 2020, 12, 25050-25057.	4.0	45
31	Diffused and successive phase transitions of (K, Na)NbO ₃ â€based ceramics with high strain and temperature insensitivity. Journal of the American Ceramic Society, 2019, 102, 2648-2657.	1.9	25
32	Abnormal grain growth in (K, Na)NbO ₃ â€based leadâ€free piezoceramic powders. Journal of the American Ceramic Society, 2019, 102, 836-844.	1.9	19
33	Enhancing temperature stability in potassium-sodium niobate ceramics through phase boundary and composition design. Journal of the European Ceramic Society, 2019, 39, 305-315.	2.8	43
34	Ultrahigh Performance in Lead-Free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence. Journal of the American Chemical Society, 2019, 141, 13987-13994.	6.6	296
35	Polymorphic characteristics challenging electrical properties in lead-free piezoceramics. Dalton Transactions, 2019, 48, 11250-11258.	1.6	21
36	The impact of chemical heterogeneity in lead-free (K, Na)NbO3 piezoelectric perovskite: Ferroelectric phase coexistence. Acta Materialia, 2019, 166, 551-559.	3.8	37

CHUNLIN ZHAO

#	Article	IF	CITATIONS
37	Potassium sodium niobate ceramics with broad phase transition range: Temperature-insensitive strain. Ceramics International, 2019, 45, 24827-24834.	2.3	4
38	Structure and domain wall dynamics in lead-free KNN-based ceramics. Journal of Applied Physics, 2019, 126, .	1.1	20
39	Superior and anti-fatigue electro-strain in Bi _{0.5} Na _{0.5} TiO ₃ -based polycrystalline relaxor ferroelectrics. Journal of Materials Chemistry A, 2019, 7, 5391-5401.	5.2	52
40	Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Materials Today, 2019, 29, 37-48.	8.3	109
41	Giant electrostrictive effect in lead-free barium titanate-based ceramics <i>via</i> A-site ion-pairs engineering. Journal of Materials Chemistry A, 2019, 7, 17366-17375.	5.2	61
42	Effect of MnCO3 on the electrical properties of PZT-based piezoceramics sintered at low temperature. Journal of Alloys and Compounds, 2019, 801, 27-32.	2.8	20
43	Rare earth element boosting temperature stability of (K,Na)NbO3-based ceramics. Journal of Alloys and Compounds, 2019, 795, 401-407.	2.8	19
44	Perovskite Na _{0.5} Bi _{0.5} TiO ₃ : a potential family of peculiar lead-free electrostrictors. Journal of Materials Chemistry A, 2019, 7, 13658-13670.	5.2	50
45	Influence of trace zirconia addition on the properties of (K,Na)NbO ₃ solid solutions. Journal of Materials Chemistry C, 2019, 7, 6914-6923.	2.7	22
46	Role of trivalent acceptors and pentavalent donors in colossal permittivity of titanium dioxide ceramics. Journal of Materials Chemistry C, 2019, 7, 4235-4243.	2.7	63
47	Influence of spark plasma sintering temperature on piezoelectric properties of PZT-PMnN piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 5691-5697.	1.1	6
48	Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions. Journal of Materials Chemistry A, 2019, 7, 25526-25536.	5.2	63
49	Compositionâ€driven broad phase boundary for optimizing properties and stability in leadâ€free barium titanate ceramics. Journal of the American Ceramic Society, 2019, 102, 3477-3487.	1.9	13
50	Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics. Acta Materialia, 2018, 147, 70-77.	3.8	102
51	Modulation of electrostriction and strain response in bismuth sodium titanateâ€based ceramics. Journal of the American Ceramic Society, 2018, 101, 3005-3014.	1.9	13
52	Defect suppression in CaZrO ₃ â€modified (K, Na)NbO ₃ â€based leadâ€free piezoceramic by sintering atmosphere control. Journal of the American Ceramic Society, 2018, 101, 3393-3401.	1.9	24
53	Large strain and temperature-insensitive piezoelectric effect in high-temperature piezoelectric ceramics. Journal of Materials Chemistry C, 2018, 6, 456-463.	2.7	43
54	Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics. ACS Applied Materials & amp; Interfaces, 2018, 10, 3680-3688.	4.0	120

CHUNLIN ZHAO

#	Article	IF	CITATIONS
55	Tailored electrical properties in ternary BiScO3-PbTiO3 ceramics by composition modification. Ceramics International, 2018, 44, 8057-8063.	2.3	9
56	Significantly improved piezoelectric performance of PZT-PMnN ceramics prepared by spark plasma sintering. RSC Advances, 2018, 8, 35594-35599.	1.7	14
57	Practical high strain with superior temperature stability in lead-free piezoceramics through domain engineering. Journal of Materials Chemistry A, 2018, 6, 23736-23745.	5.2	50
58	Excellent electrostrictive coefficient in bismuth sodium titanate-based ceramics via regulating degree of diffuseness and phase composition. Journal of Applied Physics, 2018, 124, .	1.1	14
59	Practical High Piezoelectricity in Barium Titanate Ceramics Utilizing Multiphase Convergence with Broad Structural Flexibility. Journal of the American Chemical Society, 2018, 140, 15252-15260.	6.6	187
60	Giant Electrostrictive Responses and Temperature Insensitive Strain in Barium Titanateâ€Based Ceramics. Advanced Electronic Materials, 2018, 4, 1800075.	2.6	21
61	Large strain of lead-free bismuth ferrite ternary ceramics at elevated temperature. Scripta Materialia, 2018, 155, 11-15.	2.6	52
62	Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics. Journal of the European Ceramic Society, 2018, 38, 5411-5419.	2.8	38
63	Reduced dielectric loss in new colossal permittivity (Pr, Nb)TiO ₂ ceramics by suppressing adverse effects of secondary phases. Physical Chemistry Chemical Physics, 2018, 20, 21814-21821.	1.3	33
64	The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy and Environmental Science, 2017, 10, 528-537.	15.6	386
65	High and Temperature-Insensitive Piezoelectric Strain in Alkali Niobate Lead-free Perovskite. Journal of the American Chemical Society, 2017, 139, 3889-3895.	6.6	301
66	Large electrocaloric strength and broad electrocaloric temperature span in lead-free Ba _{0.85} Ca _{0.15} Ti _{1â^'x} Hf _x O ₃ ceramics. RSC Advances, 2017, 7, 5813-5820.	1.7	46
67	Composition design and electrical properties in BiFeO3–BaTiO3–Bi(Zn0.5Ti0.5)O3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 13076-13083.	1.1	22
68	Temperature-Insensitive Piezoelectric Performance in Pb(Zr _{0.52} Ti _{0.42} Sn _{0.02} Nb _{0.04})O ₃ Ceramics Prepared by Spark Plasma Sintering. ACS Applied Materials & Interfaces, 2017, 9, 34078-34084.	4.0	20
69	Compositionâ€induced phase transitions and enhanced electrical properties in bismuth sodium titanate ceramics. Journal of the American Ceramic Society, 2017, 100, 5601-5609.	1.9	59
70	Multiphase coexistence and enhanced electrical properties in (1-x-y)BaTiO3-xCaTiO3-yBaZrO3 lead-free ceramics. Ceramics International, 2017, 43, 13516-13523.	2.3	22
71	Effect of Hf and Li on the structure and electrical properties of Bi0.5Na0.5TiO3 lead-free ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 16948-16954.	1.1	5
72	Site engineering and polarization characteristics in (Ba1â^'‹i>y‹/i>Ca‹i>y‹/i>)(Ti1â^'‹i>x‹/i>Hf‹i>x‹/i>)O3 lead-free ceramics. Journal of Applied Physics, 2016, 119, .	1.1	51

#	Article	IF	CITATIONS
73	Phase boundary design and high piezoelectric activity in (1â^'x)(Ba0.93Ca0.07)TiO3-xBa(Sn1â^'Hf)O3 lead-free ceramics. Journal of Alloys and Compounds, 2016, 666, 372-379.	2.8	18

Composition-driven phase boundary and electrical properties in (Ba_{0.94}Ca_{0.06})(Ti_{1–x}M_x)O₃(M = Sn, Hf,) Tj ETQq0 0 0 rgBT /Overlo 74

75	Giant electrocaloric effect in lead-free Ba0.94Ca0.06Ti1â [~] <i>x</i> Sn <i>x</i> O3 ceramics with tunable Curie temperature. Applied Physics Letters, 2015, 107, .	1.5	60	
----	--	-----	----	--