
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7818602/publications.pdf Version: 2024-02-01

ALBERTO & CARIZON

#	Article	IF	CITATIONS
1	Pharmacokinetics of Pegylated Liposomal Doxorubicin. Clinical Pharmacokinetics, 2003, 42, 419-436.	1.6	1,339
2	Pegylated Liposomal Doxorubicin: Metamorphosis of an Old Drug into a New Form of Chemotherapy. Cancer Investigation, 2001, 19, 424-436.	0.6	506
3	Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Advanced Drug Delivery Reviews, 2004, 56, 1177-1192.	6.6	434
4	Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes:Â In Vitro Studies. Bioconjugate Chemistry, 1999, 10, 289-298.	1.8	423
5	Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer, 2000, 89, 1037-1047.	2.0	369
6	Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: Prediction and prevention. Advanced Drug Delivery Reviews, 2011, 63, 1020-1030.	6.6	352
7	Pros and Cons of the Liposome Platform in Cancer Drug Targeting. Journal of Liposome Research, 2006, 16, 175-183.	1.5	241
8	The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1103, 94-100.	1.4	234
9	In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clinical Cancer Research, 2003, 9, 6551-9.	3.2	212
10	Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. Journal of Neurosurgery, 1995, 83, 1029-1037.	0.9	202
11	New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resistance Updates, 2016, 29, 90-106.	6.5	190
12	Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Advanced Drug Delivery Reviews, 1997, 24, 337-344.	6.6	189
13	Skin Toxic Effects of Polyethylene Glycol–Coated Liposomal Doxorubicin. Archives of Dermatology, 2000, 136, 1475-80.	1.7	184
14	Selective delivery of doxorubicin to patients with breast carcinoma metastases by stealth liposomes. , 1999, 86, 72-78.		178
15	Clinical Pharmacology of Liposomal Anthracyclines: Focus on Pegylated Liposomal Doxorubicin. Clinical Lymphoma and Myeloma, 2008, 8, 21-32.	1.4	171
16	Cardiac safety of liposomal anthracyclines. Seminars in Oncology, 2004, 31, 161-181.	0.8	154
17	Development of liposomal anthracyclines: from basics to clinical applications1This paper is based on a lecture presented at the 8th International Symposium on recent Advances in Drug Delivery Systems (Salt Lake City, UT, USA, 1997).1. Journal of Controlled Release, 1998, 53, 275-279.	4.8	147
18	Liposome imaging agents in personalized medicine. Advanced Drug Delivery Reviews, 2012, 64, 1417-1435.	6.6	146

#	Article	IF	CITATIONS
19	Dose Dependency of Pharmacokinetics and Therapeutic Efficacy of Pegylated Liposomal Doxorubicin (DOXIL) in Murine Models. Journal of Drug Targeting, 2002, 10, 539-548.	2.1	140
20	Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index. Anti-Cancer Drugs, 2015, 26, 241-258.	0.7	131
21	Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Molecular Cancer Therapeutics, 2006, 5, 818-824.	1.9	130
22	Efficacy and safety of liposomal anthracyclines in Phase I/II clinical trials. Seminars in Oncology, 2004, 31, 53-90.	0.8	126
23	Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anti-Cancer Drugs, 1999, 10, 911-920.	0.7	124
24	In vitro cytotoxicity of liposome-encapsulated doxorubicin: dependence on liposome composition and drug release. Biochimica Et Biophysica Acta - Biomembranes, 1992, 1109, 203-209.	1.4	121
25	Cardiac Safety of Pegylated Liposomal Doxorubicin (Doxil®/Caelyx®) Demonstrated by Endomyocardial Biopsy in Patients with Advanced Malignancies. Cancer Investigation, 2004, 22, 663-669.	0.6	109
26	Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models. Cancer Chemotherapy and Pharmacology, 2010, 66, 43-52.	1.1	105
27	Integrating Nanotechnology into Cancer Care. ACS Nano, 2019, 13, 7370-7376.	7.3	102
28	An open-label study to evaluate dose and cycle dependence of the pharmacokinetics of pegylated liposomal doxorubicin. Cancer Chemotherapy and Pharmacology, 2008, 61, 695-702.	1.1	99
29	Pharmacological basis of pegylated liposomal doxorubicin: Impact on cancer therapy. European Journal of Pharmaceutical Sciences, 2012, 45, 388-398.	1.9	97
30	Reduced Toxicity and Superior Therapeutic Activity of a Mitomycin C Lipid-Based Prodrug Incorporated in Pegylated Liposomes. Clinical Cancer Research, 2006, 12, 1913-1920.	3.2	92
31	Her2-targeted pegylated liposomal doxorubicin: Retention of target-specific binding and cytotoxicity after in vivo passage. Journal of Controlled Release, 2009, 136, 155-160.	4.8	89
32	InÂVivo PET Tracking of 89Zr-Labeled Vγ9VÎ′2ÂT Cells to Mouse Xenograft Breast Tumors Activated with Liposomal Alendronate. Molecular Therapy, 2019, 27, 219-229.	3.7	89
33	Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemotherapy and Pharmacology, 2012, 69, 43-50.	1.1	87
34	Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. Journal of Controlled Release, 2010, 146, 76-83.	4.8	86
35	An Improved Method for in Vivo Tracing and Imaging of Liposomes Using a Gallium 67-Deferoxamine Complex. Journal of Liposome Research, 1988, 1, 123-135.	1.5	83
36	Exploiting the Metal-Chelating Properties of the Drug Cargo for <i>In Vivo</i> Positron Emission Tomography Imaging of Liposomal Nanomedicines. ACS Nano, 2016, 10, 10294-10307.	7.3	83

#	Article	IF	CITATIONS
37	Targeting of pegylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: Intracellular activation and enhanced cytotoxicity. Journal of Controlled Release, 2016, 225, 87-95.	4.8	70
38	Nanoparticle Interactions with the Immune System: Clinical Implications for Liposome-Based Cancer Chemotherapy. Frontiers in Immunology, 2017, 8, 416.	2.2	67
39	Cancer nanomedicines: closing the translational gap. Lancet, The, 2014, 384, 2175-2176.	6.3	66
40	A comparative study of folate receptor-targeted doxorubicin delivery systems: Dosing regimens and therapeutic index. Journal of Controlled Release, 2015, 208, 106-120.	4.8	66
41	Liposome encapsulation of zoledronic acid results in major changes in tissue distribution and increase in toxicity. Journal of Controlled Release, 2013, 167, 265-275.	4.8	65
42	Targeting of folate-conjugated liposomes with co-entrapped drugs to prostate cancer cells via prostate-specific membrane antigen (PSMA). Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1407-1416.	1.7	61
43	Therapeutic efficacy of a lipid-based prodrug of mitomycin C in pegylated liposomes: Studies with human gastro-entero-pancreatic ectopic tumor models. Journal of Controlled Release, 2012, 160, 245-253.	4.8	55
44	Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. Journal of Controlled Release, 2018, 271, 139-148.	4.8	55
45	Manganese-52: applications in cell radiolabelling and liposomal nanomedicine PET imaging using oxine (8-hydroxyquinoline) as an ionophore. Dalton Transactions, 2018, 47, 9283-9293.	1.6	51
46	Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: a phase 1 study in advanced solid tumor patients. Cancer Medicine, 2015, 4, 1472-1483.	1.3	49
47	Liposome promotion of tumor growth is associated with angiogenesis and inhibition of antitumor immune responses. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 259-262.	1.7	46
48	Liposomal Drug Carrier Systems in Cancer Chemotherapy: Current Status and Future Prospects. Journal of Drug Targeting, 2002, 10, 535-538.	2.1	43
49	Adoptive Immunotherapy of Epithelial Ovarian Cancer with Vγ9Vδ2 T Cells, Potentiated by Liposomal Alendronic Acid. Journal of Immunology, 2014, 193, 5557-5566.	0.4	43
50	Reduced UV-induced degradation of doxorubicin encapsulated in polyethyleneglycol-coated liposomes. Pharmaceutical Research, 1999, 16, 841-846.	1.7	42
51	Complement Activation: A Potential Threat on the Safety of Poly(ethylene glycol)-Coated Nanomedicines. ACS Nano, 2020, 14, 7682-7688.	7.3	41
52	Dexrazoxane added to doxorubicin-based adjuvant chemotherapy of breast cancer. Anti-Cancer Drugs, 2017, 28, 787-794.	0.7	34
53	Malignant Epithelioid Hemangioendothelioma of the Liver Successfully Treated With Pegylated Liposomal Doxorubicin. Journal of Clinical Oncology, 2011, 29, e722-e724.	0.8	32
54	Translational considerations in nanomedicine: The oncology perspective. Advanced Drug Delivery Reviews, 2020, 158, 140-157.	6.6	31

#	Article	IF	CITATIONS
55	Coencapsulation of alendronate and doxorubicin in pegylated liposomes: a novel formulation for chemoimmunotherapy of cancer. Journal of Drug Targeting, 2016, 24, 878-889.	2.1	28
56	Pharmacologic Studies of a Prodrug of Mitomycin C in Pegylated Liposomes (Promitil®): High Stability in Plasma and Rapid Thiolytic Prodrug Activation in Tissues. Pharmaceutical Research, 2016, 33, 686-700.	1.7	28
57	Development of Promitil®, a lipidic prodrug of mitomycin c in PEGylated liposomes: From bench to bedside. Advanced Drug Delivery Reviews, 2020, 154-155, 13-26.	6.6	28
58	Repurposing amino-bisphosphonates by liposome formulation for a new role in cancer treatment. Seminars in Cancer Biology, 2021, 68, 175-185.	4.3	28
59	Preclinical Evaluation of Promitil, a Radiation-Responsive Liposomal Formulation of Mitomycin C Prodrug, in Chemoradiotherapy. International Journal of Radiation Oncology Biology Physics, 2016, 96, 547-555.	0.4	23
60	Doxil-induced regression of pleuro-pulmonary metastases in a patient with malignant meningioma. Anti-Cancer Drugs, 2003, 14, 247-250.	0.7	22
61	2-APB and CBD-Mediated Targeting of Charged Cytotoxic Compounds Into Tumor Cells Suggests the Involvement of TRPV2 Channels. Frontiers in Pharmacology, 2019, 10, 1198.	1.6	22
62	Long-term response to pegylated liposomal doxorubicin in patients with metastatic soft tissue sarcomas. Anti-Cancer Drugs, 2009, 20, 15-20.	0.7	18
63	Characterization of Pegylated Liposomal Mitomycin C Lipid-Based Prodrug (Promitil) by High Sensitivity Differential Scanning Calorimetry and Cryogenic Transmission Electron Microscopy. Molecular Pharmaceutics, 2017, 14, 4339-4345.	2.3	18
64	Monitoring long-term treatment with pegylated liposomal doxorubicin: how important is intensive cardiac follow-up?. Anti-Cancer Drugs, 2010, 21, 868-871.	0.7	16
65	Folate receptor targeting of radiolabeled liposomes reduces intratumoral liposome accumulation in human KB carcinoma xenografts. International Journal of Nanomedicine, 2018, Volume 13, 7647-7656.	3.3	15
66	Pharmacokinetics of mitomycin-c lipidic prodrug entrapped in liposomes and clinical correlations in metastatic colorectal cancer patients. Investigational New Drugs, 2020, 38, 1411-1420.	1.2	14
67	Initial Clinical Evaluation of Pegylated-Liposomal Doxorubicin in Solid Tumors. , 1998, , 165-174.		12
68	Chemo-Radiotherapy of Oligometastases of Colorectal Cancer With Pegylated Liposomal Mitomycin-C Prodrug (Promitil): Mechanistic Basis and Preliminary Clinical Experience. Frontiers in Oncology, 2018, 8, 544.	1.3	11
69	Liposomal Drug Carriers in Cancer Therapy. , 2006, , 437-462.		6
70	What Is the Right Way to Administer Pegylated Liposomal Doxorubicin in Breast Cancer Therapy?. Journal of Clinical Oncology, 2010, 28, e193-e194.	0.8	4
71	Liposome co-encapsulation of anti-cancer agents for pharmacological optimization of nanomedicine-based combination chemotherapy. , 2021, 4, 463-484.		4
72	Abstract 4008: Pegylated liposomal alendronate: The impact of the drug cargo on carrier-induced immune modulation. , 2016, , .		1

#	Article	IF	CITATIONS
73	Ex-vivo activation of a liposomal prodrug of mitomycin C by human tumors. Cancer Chemotherapy and Pharmacology, 0, , .	1.1	Ο