
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7818253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural and Synthetic Halogenated Amino Acids—Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules, 2021, 26, 7401.	1.7	16
2	Effect of targeted minimal sequence variations on the structure and biological activities of the human cathelicidin LLâ€37. Peptide Science, 2018, 110, e24087.	1.0	5
3	The Mechanism of Killing by the Proline-Rich Peptide Bac7(1–35) against Clinical Strains of Pseudomonas aeruginosa Differs from That against Other Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	31
4	Methods for Elucidating the Mechanism of Action of Proline-Rich and Other Non-lytic Antimicrobial Peptides. Methods in Molecular Biology, 2017, 1548, 283-295.	0.4	4
5	In vitro and in vivo evaluation of BMAP-derived peptides for the treatment of cystic fibrosis-related pulmonary infections. Amino Acids, 2016, 48, 2253-2260.	1.2	35
6	Antimicrobial and host cell-directed activities of Gly/Ser-rich peptides from salmonid cathelicidins. Fish and Shellfish Immunology, 2016, 59, 456-468.	1.6	22
7	The human cathelicidin LL-37 — A pore-forming antibacterial peptide and host-cell modulator. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 546-566.	1.4	263
8	Helical peptide–polyamine and –polyether conjugates as synthetic ionophores. Bioorganic and Medicinal Chemistry, 2015, 23, 7386-7393.	1.4	4
9	Arabica coffee extract shows antibacterial activity against Staphylococcus epidermidis and Enterococcus faecalis and low toxicity towards a human cell line. LWT - Food Science and Technology, 2015, 62, 108-114.	2.5	22
10	Lipopolysaccharide Phosphorylation by the WaaY Kinase Affects the Susceptibility of Escherichia coli to the Human Antimicrobial Peptide LL-37. Journal of Biological Chemistry, 2015, 290, 19933-19941.	1.6	18
11	PEGylation of the peptide Bac7(1–35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. European Journal of Medicinal Chemistry, 2015, 95, 210-219.	2.6	44
12	Effect of Size and N-Terminal Residue Characteristics on Bacterial Cell Penetration and Antibacterial Activity of the Proline-Rich Peptide Bac7. Journal of Medicinal Chemistry, 2015, 58, 1195-1204.	2.9	40
13	The Host Antimicrobial Peptide Bac71-35 Binds to Bacterial Ribosomal Proteins and Inhibits Protein Synthesis. Chemistry and Biology, 2014, 21, 1639-1647.	6.2	191
14	Cellular Internalization and Cytotoxicity of the Antimicrobial Proline-rich Peptide Bac7(1-35) in Monocytes/Macrophages, and its Activity Against Phagocytosed Salmonella typhimurium. Protein and Peptide Letters, 2014, 21, 382-390.	0.4	12
15	Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides. Journal of Microbiology and Biotechnology, 2014, 24, 160-167.	0.9	28
16	Potential Novel Therapeutic Strategies in Cystic Fibrosis. , 2014, , 1-25.		0
17	Functional Characterization of SbmA, a Bacterial Inner Membrane Transporter Required for Importing the Antimicrobial Peptide Bac7(1-35). Journal of Bacteriology, 2013, 195, 5343-5351.	1.0	84
18	Use of Unnatural Amino Acids to Probe Structure–Activity Relationships and Mode-of-Action of Antimicrobial Peptides. Methods in Molecular Biology, 2012, 794, 169-183.	0.4	5

#	Article	IF	CITATIONS
19	Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. BMC Microbiology, 2012, 12, 145.	1.3	79
20	Antifungal Activity of Amphotericin B Conjugated to Carbon Nanotubes. ACS Nano, 2011, 5, 199-208.	7.3	114
21	Antibacterial and anti-biofilm effects of cathelicidin peptides against pathogens isolated from cystic fibrosis patients. Peptides, 2011, 32, 1807-1814.	1.2	105
22	Epitope mapping of a PrP(Sc)-specific monoclonal antibody: Identification of a novel C-terminally truncated prion fragment. Molecular Immunology, 2011, 48, 746-750.	1.0	21
23	Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cellular and Molecular Life Sciences, 2011, 68, 2317-2330.	2.4	203
24	Can the interaction between the antimicrobial peptide LL-37 and alginate be exploited for the formulation of new biomaterials with antimicrobial properties?. Carbohydrate Polymers, 2011, 83, 578-585.	5.1	17
25	Activity of Cathelicidin Peptides against Simkania negevensis. International Journal of Peptides, 2011, 2011, 1-3.	0.7	1
26	Role of Cathelicidin Peptides in Bovine Host Defense and Healing. Probiotics and Antimicrobial Proteins, 2010, 2, 12-20.	1.9	13
27	The proline-rich peptide Bac7(1-35) reduces mortality from Salmonella typhimurium in a mouse model of infection. BMC Microbiology, 2010, 10, 178.	1.3	53
28	Design, synthesis and antimicrobial properties of non-hemolytic cationic α-cyclopeptoids. Bioorganic and Medicinal Chemistry, 2010, 18, 2010-2018.	1.4	49
29	Increasing effect of a high dose of PC-1 peptide on the infectivity ofChlamydophila abortus. FEMS Immunology and Medical Microbiology, 2010, 59, 221-222.	2.7	2
30	Rapid and Reliable Detection of Antimicrobial Peptide Penetration into Gram-Negative Bacteria Based on Fluorescence Quenching. Antimicrobial Agents and Chemotherapy, 2009, 53, 3501-3504.	1.4	64
31	The Proline-rich Antibacterial Peptide Bac7 Binds to and Inhibits in vitro the Molecular Chaperone DnaK. International Journal of Peptide Research and Therapeutics, 2009, 15, 147-155.	0.9	55
32	The salmonid cathelicidins: A gene family with highly varied C-terminal antimicrobial domains. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2009, 152, 376-381.	0.7	43
33	Non-cytotoxic Silver Nanoparticle-Polysaccharide Nanocomposites with Antimicrobial Activity. Biomacromolecules, 2009, 10, 1429-1435.	2.6	377
34	Substitution of the Arginine/Leucine Residues in Apidaecin Ib with Peptoid Residues: Effect on Antimicrobial Activity, Cellular Uptake, and Proteolytic Degradation. Journal of Medicinal Chemistry, 2009, 52, 5197-5206.	2.9	35
35	Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics. Methods in Molecular Biology, 2008, 494, 161-176.	0.4	14
36	Role of the <i>Escherichia coli</i> SbmA in the antimicrobial activity of prolineâ€rich peptides. Molecular Microbiology, 2007, 66, 151-163.	1.2	204

#	Article	IF	CITATIONS
37	Sensitivity of Chlamydia suis to cathelicidin peptides. Veterinary Microbiology, 2007, 123, 269-273.	0.8	15
38	Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1732-1740.	1.1	116
39	Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. Journal of Antimicrobial Chemotherapy, 2006, 58, 950-959.	1.3	125
40	Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS Journal, 2005, 272, 4398-4406.	2.2	51
41	Targeted Delivery of Amphotericin B to Cells by Using Functionalized Carbon Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 6358-6362.	7.2	592
42	Activity of Cathelicidin Peptides against Chlamydia spp. Antimicrobial Agents and Chemotherapy, 2005, 49, 1201-1202.	1.4	30
43	Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens. Peptides, 2005, 26, 1127-1132.	1.2	58
44	In vitro activity of protegrin-1 and beta-defensin-1, alone and in combination with isoniazid, against Mycobacterium tuberculosis. Peptides, 2004, 25, 1075-1077.	1.2	56
45	Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides, 2004, 25, 2055-2061.	1.2	86
46	In vitro and in vivo antimicrobial activity of two α-helical cathelicidin peptides and of their synthetic analogs. Peptides, 2003, 24, 1723-1731.	1.2	80
47	Antimicrobial activity of SMAP-29 against the Bacteroides fragilis group and clostridia. Journal of Antimicrobial Chemotherapy, 2003, 52, 375-381.	1.3	17
48	BMAP-28, an Antibiotic Peptide of Innate Immunity, Induces Cell Death through Opening of the Mitochondrial Permeability Transition Pore. Molecular and Cellular Biology, 2002, 22, 1926-1935.	1.1	143
49	Comparative in vitro activity of five cathelicidin-derived synthetic peptides against Leptospira, Borrelia and Treponema pallidum. Journal of Antimicrobial Chemotherapy, 2002, 50, 895-902.	1.3	51
50	Pro-rich Antimicrobial Peptides from Animals: Structure, Biological Functions and Mechanism of Action. Current Pharmaceutical Design, 2002, 8, 763-778.	0.9	131
51	Cathelicidin Peptides as Candidates for a Novel Class of Antimicrobials. Current Pharmaceutical Design, 2002, 8, 779-793.	0.9	103
52	Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DEFB1 polymorphism. Biochemical and Biophysical Research Communications, 2002, 293, 586-592.	1.0	37
53	Antimicrobial Peptides:Â Synthesis and Antibacterial Activity of Linear and Cyclic Drosocin and Apidaecin 1b Analoguesâ€. Journal of Medicinal Chemistry, 2002, 45, 4494-4504.	2.9	62
54	The cleavage site of C5 from man and animals as a common target for neutralizing human monoclonal antibodies: in vitro and in vivo studies. European Journal of Immunology, 2002, 32, 2773-2782.	1.6	40

#	Article	IF	CITATIONS
55	A novel bovine antimicrobial peptide of the cathelicidin family. , 2002, , 789-790.		Ο
56	Preparation of an Antibody Recognizing both Human and Rodent MRP1. Biochemical and Biophysical Research Communications, 2001, 288, 1064-1068.	1.0	21
57	Anti-Microbial Activity and Cell Binding are Controled by Sequence Determinants in the Anti-Microbial Peptide PR-39. Journal of Investigative Dermatology, 2001, 116, 230-235.	0.3	54
58	Structural and Functional Analysis of Horse Cathelicidin Peptides. Antimicrobial Agents and Chemotherapy, 2001, 45, 715-722.	1.4	42
59	Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers, 2000, 55, 31-49.	1.2	285
60	Structure and Biology of Cathelicidins. , 2000, 479, 203-218.		115
61	Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. , 2000, 55, 31.		181
62	SMAP-29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Letters, 1999, 463, 58-62.	1.3	188
63	Cytotoxicity and Apoptosis Mediated by Two Peptides of Innate Immunity. Cellular Immunology, 1998, 189, 107-115.	1.4	139
64	Cloning and analysis of a transcript derived from two contiguous genes of the cathelicidin family. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1398, 393-396.	2.4	12
65	Biological characterization of a novel mammalian antimicrobial peptide. Biochimica Et Biophysica Acta - General Subjects, 1998, 1425, 361-368.	1.1	37
66	An Approach Combining Rapid cDNA Amplification and Chemical Synthesis for the Identification of Novel, Cathelicidin-Derived, Antimicrobial Peptides. , 1997, 78, 133-150.		38
67	Identification of CRAMP, a Cathelin-related Antimicrobial Peptide Expressed in the Embryonic and Adult Mouse. Journal of Biological Chemistry, 1997, 272, 13088-13093.	1.6	360
68	The Cathelicidin Family of Antimicrobial Peptide Precursors: A Component of the Oxygen-Independent Defense Mechanisms of Neutrophils. Annals of the New York Academy of Sciences, 1997, 832, 147-162.	1.8	59
69	Biological Characterization of Two Novel Cathelicidin-derived Peptides and Identification of Structural Requirements for Their Antimicrobial and Cell Lytic Activities. Journal of Biological Chemistry, 1996, 271, 28375-28381.	1.6	236
70	PMAP-37, a Novel Antibacterial Peptide from Pig Myeloid Cells. cDNA Cloning, Chemical Synthesis and Activity. FEBS Journal, 1995, 228, 941-946.	0.2	2
71	Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Letters, 1995, 374, 1-5.	1.3	634
72	PMAP-37, a Novel Antibacterial Peptide from Pig Myeloid Cells. cDNA Cloning, Chemical Synthesis and Activity. FEBS Journal, 1995, 228, 941-946.	0.2	90

#	Article	IF	CITATIONS
73	Chemical synthesis and biological activity of a novel antibacterial peptide deduced from a pig myeloid cDNA. FEBS Letters, 1994, 337, 303-307.	1.3	105
74	Identification and characterization of a primary antibacterial domain in CAP18, a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Letters, 1994, 339, 108-112.	1.3	94
75	Proteolytic cleavage by neutrophil elastase converts inactive storage proforms to antibacterial bactenecins. FEBS Journal, 1992, 209, 589-595.	0.2	143
76	Neutrophil and Eosinophil Granules as Stores of "Defense―Proteins. Blood Cell Biochemistry, 1991, , 335-368.	0.3	24
77	Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules Journal of Cell Biology, 1990, 111, 1363-1371.	2.3	142
78	C-reactive protein decreases protein phosphorylation in stimulated human neutrophils. FEBS Letters, 1988, 237, 173-177.	1.3	13
79	A proton nuclear magnetic resonance study of the conformation of bovine anaphylatoxin C5a in solution. FEBS Letters, 1988, 238, 289-294.	1.3	16
80	Inactivation of herpes simplex virus by protein components of bovine neutrophil granules. Antiviral Research, 1987, 7, 341-352.	1.9	22
81	Co-activation of protein kinase C and NADPH oxidase in the plasma membrane of neutrophil cytoplasts. Biochemical and Biophysical Research Communications, 1986, 134, 305-312.	1.0	59
82	C5a fragment of bovine complement. Purification, bioassays, amino-acid sequence and other structural studies. FEBS Journal, 1986, 155, 77-86.	0.2	43
83	Activation of protein kinase C in neutrophil cytoplasts. FEBS Letters, 1985, 180, 185-190.	1.3	67
84	Wide-spectrum antibiotic activity of bovine granulocyte polypeptides. Antimicrobial Agents and Chemotherapy, 1984, 26, 405-407.	1.4	21
85	A novel type of cytoplasmic granule in bovine neutrophils Journal of Cell Biology, 1983, 96, 1651-1661.	2.3	91
86	The Bovine Neutrophil: Separation and Partial Characterization of Plasma Membrane and Cytoplasmic Granules. Advances in Experimental Medicine and Biology, 1982, 141, 277-281.	0.8	4
87	Improved technique for the measurement of the kinetics of Ca2+ uptake by cells: The coupling of an amplifier with voltage regulator to a Ca2+-selective electrode. Analytical Biochemistry, 1980, 102, 77-79.	1.1	13
88	Isolation and Partial Characterization of the Plasma Membrane of Purified Bovine Neutrophils. FEBS Journal, 1980, 111, 341-346.	0.2	37
89	The release of superoxide anion from granulocytes: Effect of inhibitors of anion permeability. Biochemical and Biophysical Research Communications, 1979, 88, 44-49.	1.0	21
90	Secretion of granule enzymes from alveolar macrophages. Experimental Cell Research, 1978, 112, 249-256.	1.2	30