Nihan Kosku Perkgoz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7818111/publications.pdf

Version: 2024-02-01

45 papers

1,331 citations

³⁹⁴²⁸⁶
19
h-index

35 g-index

45 all docs 45 docs citations

45 times ranked

1784 citing authors

#	Article	IF	CITATIONS
1	Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechnology, 2016, 27, 335702.	1.3	226
2	Metamaterial-based wireless strain sensors. Applied Physics Letters, 2009, 95, .	1.5	144
3	Flexible metamaterials for wireless strain sensing. Applied Physics Letters, 2009, 95, 181105.	1.5	94
4	Nested Metamaterials for Wireless Strain Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 450-458.	1.9	93
5	Vibrational and thermodynamic properties of <i>$\hat{l}\pm$, <i>\hat{l}^2, <i>$\hat{l}^3, and 6, 6, 12-graphyne structures. Nanotechnology, 2014, 25, 185701.$</i></i></i>	1.3	64
6	White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New Journal of Physics, 2008, 10, 023026.	1.2	55
7	Metamaterial based telemetric strain sensing in different materials. Optics Express, 2010, 18, 5000.	1.7	52
8	CVD growth of monolayer MoS ₂ : Role of growth zone configuration and precursors ratio. Japanese Journal of Applied Physics, 2017, 56, 06GG05.	0.8	51
9	Bio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications. Journal of Micromechanics and Microengineering, 2008, 18, 115017.	1.5	42
10	Investigation of Single-Wall MoS2 Monolayer Flakes Grown by Chemical Vapor Deposition. Nano-Micro Letters, 2016, 8, 70-79.	14.4	37
11	A distinct correlation between the vibrational and thermal transport properties of group VA monolayer crystals. Nanoscale, 2018, 10, 7803-7812.	2.8	35
12	Near-Unity Efficiency Energy Transfer from Colloidal Semiconductor Quantum Wells of CdSe/CdS Nanoplatelets to a Monolayer of MoS ₂ . ACS Nano, 2018, 12, 8547-8554.	7.3	34
13	Longâ€Term Stability Control of CVDâ€Grown Monolayer MoS ₂ . Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800687.	1.2	31
14	CVD growth of monolayer WS2 through controlled seed formation and vapor density. Materials Science in Semiconductor Processing, 2019, 93, 158-163.	1.9	30
15	CVD grown 2D MoS ₂ layers: A photoluminescence and fluorescence lifetime imaging study. Physica Status Solidi - Rapid Research Letters, 2016, 10, 792-796.	1.2	26
16	Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Materials Science in Semiconductor Processing, 2020, 105, 104679.	1.9	26
17	Photocatalytic hybrid nanocomposites of metal oxide nanoparticles enhanced towards the visible spectral range. Applied Catalysis B: Environmental, 2011, 105, 77-85.	10.8	25
18	High-rate deposition of highly crystallized silicon films from inductively coupled plasma. Thin Solid Films, 2003, 435, 39-43.	0.8	24

#	Article	IF	CITATIONS
19	Layer and size distribution control of CVD-grown 2D MoS2 using ALD-deposited MoO3 structures as the precursor. Materials Science in Semiconductor Processing, 2020, 108, 104880.	1.9	24
20	Insights into the high-rate growth of highly crystallized silicon films from inductively coupled plasma of H2-diluted SiH4. Thin Solid Films, 2006, 511-512, 265-270.	0.8	20
21	A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te). Materials Science in Semiconductor Processing, 2022, 148, 106829.	1.9	20
22	Low Loss Atomic Layer Deposited Al ₂ O ₃ Waveguides for Applications in On-Chip Optical Amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	1.9	19
23	Influence of substrate dc bias on crystallinity of silicon films grown at a high rate from inductively-coupled plasma CVD. Applied Surface Science, 2005, 244, 39-42.	3.1	18
24	Metamaterial-based wireless RF-MEMS strain sensors. , 2010, , .		17
25	A comparative device performance assesment of CVD grown MoS2 and WS2 monolayers. Journal of Materials Science: Materials in Electronics, 2018, 29, 8785-8792.	1.1	17
26	Controlled CVD growth of ultrathin Mo2C (MXene) flakes. Journal of Applied Physics, 2022, 131, .	1.1	14
27	Design and Realization of a Fully On-Chip High-\$Q\$ Resonator at 15 GHz on Silicon. IEEE Transactions on Electron Devices, 2008, 55, 3459-3466.	1.6	12
28	The application of very high frequency inductively coupled plasma to high-rate growth of microcrystalline silicon films. Journal of Non-Crystalline Solids, 2006, 352, 911-914.	1.5	9
29	Nanotechnological Advances in Catalytic Thin Films for Green Large-Area Surfaces. Journal of Nanomaterials, 2015, 2015, 1-20.	1.5	9
30	Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress. Sensors, 2009, 9, 9444-9451.	2.1	8
31	MoS ₂ Phototransistor Sensitized by Colloidal Semiconductor Quantum Wells. Advanced Optical Materials, 2020, 8, 2001198.	3.6	8
32	Temperature-dependent Raman modes of MoS ₂ /MoSe ₂ van der Waals heterostructures. Semiconductor Science and Technology, 2020, 35, 115020.	1.0	8
33	RF-MEMS load sensors with enhanced Q-factor and sensitivity in a suspended architecture. Microelectronic Engineering, 2011, 88, 247-253.	1.1	7
34	Thermal Conductivity Suppression in Nanostructured Silicon and Germanium Nanowires. Journal of Electronic Materials, 2016, 45, 1594-1600.	1.0	7
35	Bandgap tuning of Monolayer MoS2(1-x)Se2x alloys by optimizing parameters. Materials Science in Semiconductor Processing, 2019, 99, 134-139.	1.9	7
36	Comparative study of optically activated nanocomposites with photocatalytic TiO ₂ and ZnO nanoparticles for massive environmental decontamination. Journal of Nanophotonics, 2007, 1, 011685.	0.4	5

#	Article	IF	Citations
37	CVD GROWTH and CHARACTERIZATION OF 2D TRANSITION METAL DICHALCOGENIDES, MoS2 and WS2. Anadolu University Journal of Sciences & Technology, 0 , 1 -1.	0.2	4
38	CALCULATION OF COVERAGE AND FLAKE SIZE OF MONOLAYERS GROWN BY CHEMICAL VAPOR DEPOSITION TECHNIQUE. UludaÄŸ University Journal of the Faculty of Engineering, 0, , 203-214.	0.2	3
39	Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires. Applied Physics Letters, 2014, 105, 141116.	1.5	2
40	Enhanced performance of supercapacitors based on rotationally stacked CVD graphene. Journal of Applied Physics, 2022, 131, .	1.1	2
41	Control of optical amplification process with extremely low background loss in Er:Al <inf>O<inf>3</inf> Waveguides., 2017,,.</inf>		1
42	A realistic approach for designing a single-mode Y-branch for weakly guiding material system using particle swarm algorithm. Optical and Quantum Electronics, 2020, 52, 1.	1.5	1
43	White CdS Nanoluminophore based Tunable Hybrid Light Emitting Diodes. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
44	Development and Biocompatibility Characterization of a BioMEMS Sensor for Monitoring the Progression of Fracture Healing., 2009, , .		0
45	ALD Assisted 2D Monolayer Transition Metal Dichalcogenides and Their Applications in Optoelectronics. , 2019, , .		0